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FOREWORD

The research described in this report, was conducted by ManLabs,
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cognizance of the NASA Project Manager, Mr. James Gangler NASA
Headquarters, Washington, D.C. 20548, with Drs. Larry Kaufman
and Edward V. Clougherty of ManLabs, Inc. serving as Principal
Investigators. ManLabs personel who participated in this study
included, H. Nesor, L. Gordon, K. Meaney, J. Davis and H. Tushman.



ABSTRACT

Hot pressed zirconium diboride-silicon carbide-graphite
composites have demonstrated outstanding characteristics as potential
thermal protection components for future lifting reentry applications at
temperatures up to 5000 F. Current utilization is limited by a lack of
resistance to fracture. Fracture energies of WC-6Co, Boride V (ZrB

2
+SiC),

Boride VIII (ZrB2 +SiC+C) and Boride VIII-M2 (ZrB2 +SiC+C) were measured

by slow bend and impact tests of standard and subscale notched charpy bars.
Cobalt bonded tungsten carbide exhibited impact energies of 0,76 ft-lb for
standard size notched charpy bars, equivilent to an impact energy per unit

area of 73.9 in-lb/in 2 (12950 J/M2 ). Boride V and the Boride VIII composites
exhibited impact energies which are one third and one quarter respectively
of that observed for WC-6Co. These values compare favorably with impact
fracture energies measured for SiC and Si 3 N 4 . Slow bend-notched bar-

fracture energies for WC-6Co were near 2.6 in-lb/in 2 (455 J/M2 ) or about
one twentieth of the impact fracture energies. Slow bend fracture energies
for Boride VIII-M2, Boride VIII and Boride V were found to be 58%, 42%
and 25% of the value observed for WC-6Co. Fractographic characterization
showed distinct differences for the WC-6Co case where slow bend testing
resulted in smooth transgranular cleavage while samples broken by impact
exhibited intergranular failures. By contrast the boride fractures showed
no distinction based on testing method. Fabrication studies were conducted
to effect alteration of the boride composites by alloying and introduction of
graphite cloth. Graphite cloth has been successfully incorporated in Boride
V, however no significant improvement in fracture energy resulted. Addition
of nickel to Boride V was unsuccessful due to reaction of nickel with the
silicon carbide component of Boride V. However nickel and iron were added
successfully to ZrB2 and hot pressed near 2400 F. This represents a

substantial reduction in temperature (1200- 14000°F) from the 3600- 38000 F
normally employed.
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I. SUMMARY OF RESULTS

High temperature oxidation studies and arc plasma reentry
simulation tests of hot pressed zirconium diboride-silicon carbide-graphite
composites have demonstrated the outstanding characteristics of these
materials as potential thermal protection components for long time multi-
cycle applications at temperatures up to 5000 F. The relatively high
thermal conductivity and strength properties of these composites coupled
with their machining characteristics afford additional justification for
considering them for future lifting reentry applications. Current utilization
of these materials is limited by a lack of resistance to fracture. The
present report details the first phase of a study aimed at alleviating the
problem by measuring the fracture energy of boride composites and seeking
to improve the fracture energy through alloying, compositing and control
of structure.

The fracture energies of Boride V (ZrB2 +SiC), Boride VIII

(ZrB 2 +SiC+C) and Boride VIII-M2 (ZrB2 +SiC+C) were measured by means

of slow bend and impact tests of standard and subscale notched charpy bars.
Similar measurements were conducted on WC-6Co, a commerically available
tool material based on cobalt bonded tungsten carbide. The latter (included
to provide a direct basis for comparison exhibited impact energies of 0.76
ft-lb for standard size notched charpy bars. This value is equivilent to an

impact energy per unit area of 73.9 in-lb/in (12950 J/M ). By contrast
Boride V and the Boride VIII composites exhibited impact energies which
are one third and one quarter respectively of that observed for WC-6Co.
These values compare favorably with impact fracture energies measured
for SiC and Si3 N 4 .

Measurement of the fracture energy per unit area for WC-6Co
in slow bend tests of notched charpy bars yielded values near 2.6 in-lb/in 2

(455 J/M ) or about one twentieth of the impact fracture energies. This
result is quite surprising since evaluation of ultra high strength steels
and titanium alloys usually yields a close correspondence between the slow
bend and impact energy values for plane strain fracture in precracked notched
bars. Although the precracking technique cannot readily be applied in the
present case, differences exceeding a factor of two are quite uncommon.
The divergence is all the more difficult to reconcile because plastic or
yielding behavior does not occur at room temperature. Similar slow bend
fracture energies for Boride VIII-M2, Boride VIII and Boride V were found
to be 58%, 42% and 25% of the value observed for WC-6Co. Microstructural
and fractographic characterization of the slow bend and impact samples showed
distinct differences for the WC-6Co case where slow bend testing resulted
in smooth transgranular cleavage while samples broken by impact exhibited
intergranular failures. By contrast the boride fractures showed no distinction
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based on testing method. However, the Boride V composite (ZrB
2
+SiC)

exhibited smooth transgranular cleavage in both tests while Boride VIII
and VIII-M2 containing graphite as a further addition, was characterized
by faceted quasi cleavage surfaces as the result of slow bend and impact
te sting.

Notwithstanding substantial difference between the impact
and slow bend results for WC-6Co and the boride composites, the higher
fracture energies exhibited by the former are due to the presence of the
cobalt binder phase and the grain size which is 5-10 times smaller than
exhibited by the boride composites. Accordingly, fabrication studies were
conducted to effect alteration of the boride composites by alloying and
introduction of graphite cloth. Graphite cloth has been successfully in-
corporated in Boride V, however no significant improvement in fracture
energy resulted. Addition of nickel to Boride V was unsuccessful due to
reaction of nickel with the silicon carbide component of Boride V. However
nickel and iron were added successfully to ZrB2 and hot pressed near

24000 F. This represents a substantial reduction in temperature (1200-1400 0 F)
from the 3600-3800 F normally employed. However, improvement in
fracture energy did not result. Initial attempts at adding chromium powder
and tantalum wire have been unsuccessful.
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II INTRODUCTION

In 1962 ManLabs, Inc. initiated an "Investigation of Borides for
High Temperature Applications" under AF33(657)-8635 which identified
specific boride composites with outstanding physical and oxidation re-
sistant properties for long-time applications at temperatures above
3500 F. A follow-on program under AF33(615)-3671 devoted to "Develop-
ment of Refractory Oxidation-Resistant Diborides" has led to a new
family of materials with unmatched characteristics of oxidation resistance,
strength and thermal shock resistance at temperatures between 30000 and
5000 F. A parallel was initiated in 1966 for "Stability Characterization
of Refractory Materials under High Velocity Atmospheric Flight Conditions"
under AF33(615)-3859. This study evaluated borides, graphites, carbides,
boride-carbide graphite composites, coated refractory metals and alloys,
coated graphites and oxide metal composites under conditions simulating
long time (up to 25,000 seconds) multi mission conditions characteristic
of lifting reentry. Documentation of the results is available in Air Force
Material Laboratory reports and related publications (1-18).* The
"Stability" program demonstrated the unique advantages o-Tboride com-
posites for long exposure, multi-mission applications under lifting re-
entry conditions. These results show that the boride composites are out-
standing candidates for survival times in the 50 000-150,000 second range
at surface temperature between 3000° and 5 0 0 0 F.

This conclusion can be illustrated by considering Figure 1 which
shows the Air Force Flight Dynamic Laboratory FDL-7MC maximum cross
range trajectory. This trajectory is typical of high lift/drag ratio lifting
reentry vehicles which will be important for future space flight concepts.
The central panel shows that the conditions at 600 seconds and 1800 seconds
into the flight produce the most severe heating environments. These
conditions have been converted to pressure, enthalpy and heat flux based
on a three inch body radius. Subsequently, boride composites were ex-
posed to arc plasma tests in air under conditions simulating those shown
in Figure 1.**

Sample Boride V (Hf) HfB2. 1 +20%SiC was exposed for thirteen

cycles at 0.07 atm (1 psi) stagnation pressure, a stagnation enthalpy of

10,200 BTU/lb (2.39x107J/kg) and a cold wall flux of 495 BTU/ft2 sec.

(5.62x106 J/M2 sec) Each cycle was about 1800 seconds long with a total
exposure time of 22,500 seconds. The surface temperature was observed

to be 46500 F. Total material recession was 16 mils (3.81x10 4 M) after
this extremely long exposure. Figure 2 shows a post exposure section
through the sample. Boride VIII(14,30)ZrB2 +SiC+C was exposed at 1.02

atm (15 psi) stagnation pressure, a stagnation enthalpy of 4250 BTU/lb

*Underscored numbers in parentheses denote references.

**In;view of the current NASA policy of introducing MKS units, the present
report employs dual values reflecting English units (BTU,lb (force), ft)
which have been commonly employed, up to now, as well MKS units (Joule,
Newton, Meter). Table 1 contains the conversion units employed in this
report.
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(0.99x10 7 J/kg) and a cold wall heat flux of 400 BTU/ftZsec (4. 54x106 J/MZsec).
This test covered twelve cycles of approximately 1800 seconds duration
for a total exposure time of 21,600 seconds. Surface temperature held near

4415°F. Figure 3 shows that the recession was 104 mils (2.64x10-3 M).
Under similar conditions graphite and tungsten would exhibit recessions
of 20 to 40 inches. Finally sample Boride VZrB2. 1+20% SiC was exposed

for four cycles at 1.0 atm (15 psi) stagnation pressure, a stagnation enthalpy

of 5000 BTU/lb and a cold wall heat flux of 380 BTU/ft 2 sec. Each cycle
was 18QQ seconds long, total gxpQsure time was 7_200 secgnds. The surface
temperatiiure wede neav 4550 PF, Total triatieial @tegeiltn wag 26 triul,
Figure 4 and 5 are post exposure photomicrographs of this sample.

These results illustrate the reuse capability of boride composites
for lifting reentry application, since they exceed the range of conditions
and flight times characteristic of the FDL-7MC trajectory. This capability
is unrivaled by any other materials system.

Relevent physical and mechanical property data for ZrB2 +SiC and

ZrB2+SiC+C are shown in Table 2. Although the hafnium base analogues

of these composites are more refractory, the zirconium base composites
are one half as dense with raw material costs per per pound which are one
tenth of their hafnium base counterparts. Specific grades of the Boride
VIII(14, 30) material are machineable with carbide tools and have been
employed to fabricate nuts and bolts as shown in Figure 6.

A direct illustration of the flexability for designing and fabricating
structures which is afforded by the machineability of the Boride VIII(14, 30)
composites is shown in Figures 7-16 (18). Figures 7 and 8 show a boride
male nosetip assembly composed of bori-de nosetip (on the right) which is

connected to a Ta-lOW holder coated with Sylvania's R512C ( 7 0W/oSi- 2 0/

W/oTi-10W/oMo) coating connected to a Ta-1OW sting (on the left). The
sting is held in the arc facility so that the hot air stream impinges on the
axis of the boride hemisphere-cone. As indicated in Figure 7, this assembly
was exposed at a high heat flux level for 30 minutes in air in a test where
the surface temperature was 4555 F with a limited recession. Figure 9
shows post exposure photographs including a destruction of Nosetip HP69
by melting and a successful run of male nosetip HP62 at lower flux levels.
Figures 10 and 11 show photographs of a female nosetip which was success-
fully tested at 49200 F with limited recession.

Arc tests consisting of multiple exposures simulating normal lifting
reentry and abort conditions have been performed as illustrated in Figures
12-14. In these tests a male nosetip assembly ran for more than one and
one half hours with little recession. Finally, Figures 14-16 shows a leading
edge configuration consisting of a Boride composite attached to a coated
Ta-1OW holder which was successfully tested. Leading Edge HP61 ran
to destruction due to melting as shown in Figure 16. Although melting
occured no cracking was noted. Leading Edge HP72 survived an 1800
second exposured with a surface temperature of 5090 F with a total oxidation
depth of 46 mils as shown in Figure 16.
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The boride composites are currently formed by conventional
hot pressing-methods with state-of-the-art size limitations in the one
half to one foot range. Billets which are ten inches long and four inches
by four inches in cross-section (0. 254MxO. 102M x 0. 102M) are currently
being fabricated for a six foot nosetip-leading edge HATS structure (19).
I-Iowever, since the hot pressing technology required to form these com-
posites is identical to that employed in fabricating boron carbide armor
and helicopter seats (contoured sizes up to two feet across) present size
limitations should be readily overcome.

Measurements of internal temperatures in models exposed in
arc plasma tests indicate that significant temperature gradients can be
developed across thin oxide scales formed on the surface of metals or
intermetallic compounds during oxidation. The gradient results from
the formation of an insulating oxide scale on the surface. Temperature
gradients up to 1500°F have been measured through 400 mil walls com-
posed of oxide and base material at temperatures between 30000 and
5000°F. Such gradients were found to persist for long time (30 minutes)
during oxidation of samples in arc plasma tests.

In spite of the outstanding high temperature strength and resistance
to thermal stress and oxidation exhibited by boride composites which have
been developed by ManLabs, Inc., utilization is limited by low fracture
toughness at room temperature. Several grades of these composites which
are based on zirconium diboride with additions of silicon carbide and
graphite have been developed in order to optimize high temperature per-
formance and machinability. Elimination of the shortcoming due to low
fracture toughness would constitute an important step in expanding the
range of applications in which this material can be used.

In order to progress toward elimation of this shortcoming, the
current program has been directed toward establishing the fracture
characteristics of the present Boride composites and investigation of
methods for improvement of the fracture toughness. The present report,
which covers the first year of this study, details the results of fabrica-
tion, mechanical testing and microstructural investigations.
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III FABRICATION AND CHARACTERIZATION OF BORIDE

COMPOSITES

A. Introduction

Boride composites based on combinations of ZrB
2

, SiC

and C have been fabricated by hot pressing to provide the stock used for
obtaining suitable mechanical test bars. The basic compositions investigated

to date include Boride V (80V/oZrB2: 20V/oSiC) and Boride VIII (56V/oZrB2:

14V/oSiC: 3 0 V/oC) as well as several variations reflecting metallic additions.
In addition cobalt bonded tungsten carbide was evaluated as a reference
material. The latter was procured as tool stock. Table 3 presents the
systematic labeling system (10) used at ManLabs to designate billets of
hot pressed boride composites.

B. Processing Conditions Employed for Billet Fabrication

The processing conditions employed for billet fabrication
are shown in Tables 4 and 5. Most of the billets were hot pressed in
ManLabs facility although some composites were hot pressed in the larger
sizes in Avco and Norton hot press facilities. More than thirty hot pressings
were performed to obtain sufficient materials for testing.

1. Boride V

Boride V is a dense polycrystalline composition of ZrB 2 ,

the principal phase, with 20V/oSiC, the secondary phase. This composition

is characterized by high modulus (E= 75x106 psi, 5. lx101 1N/M2) high strength

((= 55,000 psi, 3.7x108 N/M2 ) and good thermal stress resistance (10).
Representative microstructural features are provided in Figure 17.

2. Ni Modified Boride V

Attempts to improve fracture toughness by incorporating
a skeletal nickel reinforcing phase were not successful as discussed in
the following Section II-C. Specimen stock material obtained from HP34
was employed for slow bend tests. Examination of the microstructural features
and X-ray diffraction data show that the nickel additive reacts with silicon
carbide under the processing conditions shown in Table 4 to form a nickel
silicide phase. The latter would not be expected to provide a reinforcing
action and yielded low fracture toughness and strength levels of a (750 F)=

35,000 psi or 2.4x108 N/M2 .

3. Boride V - Reinforced by Carbon Cloth

Three billets were successfully hot pressed to full density
with 16 mesh carbon cloth in planes parallel to the diametrical plane of
the billet. The graphite cloth used in fabricating these billets was an open
weone-10 mesh material obtained from Kreha Corp. of America, Gardena

California. This square mesh cloth consists of 25 mil (6.3x10 4 M) thick

6



fiber threads with 75 mils (1.9x10-3M) between each thread. The first
billet, HP80, was fabricated with a one eighth inch separation between
the cloth layers. Figure 18; the second billet, HP82, with a one sixteenth
inch separation; and the third billet, HP93 with a one thirtysecond inch
separation.

X-ray diffraction of these materials provides identification of
ZrB2 , SiC and graphite indicating that the carbon graphitizes (at least
on the surface of the cloth) during the processing. Microstructural features
of these billets are the same. A representative graphite/matrix area is
preyid in Figsus 19 and ZQ and mire st ugural featuress f the matrix
area phase, consisting essentially of ZrB

Z
and SiC inrthe Boride V proportions,

are shown in Figure 21.

4. Boride VIII (14,30)

Boride VIII(14, 30) is a dense polycrystalline composite

of ZrB2 (5 6 V/o), SiC ( 1 4 V/o), and C ( 3 0V/o). The microstructure and the

properties do not show any appreciable anistropy(11 12). The microstructural
features are shown in Figure 22. The two billets employed for specimens
in this program, D198M for slow bend tests and D201M for impact tests,
are equivalent.

5. Boride VIII(14,30)M2

Boride VIII(14,30)M2 is a dense polycrystalline composite
of ZrB2 , SiC and C of the same relative proportions as the VIII (14,30)
described above. However, Boride VIII (14, 3u)MZ is processed with a
special carbon powder which produces a dense boride material with improved
machining characteristics. The VIII(14,30) and VIII(14,30)M2 composites
have equivalent oxidation resistance and thermal stability. Microstructural
and property anisotropy are significant and some variation in anisotropy has
been observed for billets hot pressed by different procedures (19). In
particular smaller billets of three inch diameter fabricated at ManLabs are
more anisotropic than larger billets pressed at Norton Company., The variation
of strength and elastic modulus with billet orientation relative to pressing
direction for VIII(14, 30)MZ hot pressed by two different methods are shown
in Table 6. A comparison of microstructural features is provided in Figure 23.
Impact specimens were obtained from billet NP2M2 while slow bend test
specimens were taken from billets HP45M2 and billet NP2M2.

6. Metallic Additions to Zirconium-Diboride

Stock material for test specimens were obtained for ZrB2

20 Ni and ZrB210 Fe. The processing conditions are provided in Table 5.

The billets fabricated with ZrB 2 10 Ni, ZrB 2 10 Cr, and ZrB2 20 Ni-Ta-
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wire-reinforced were not employed for test specimens. The latter two
compositions produced cracked billets and the former with 10 weight
percent Ni was of low relative density. Details of microstructural features
and phases identified in the hot pressed billets are provided in Section
II-D below.

7. Tungsten Carbide Cermet

The tungsten carbide cermet, WC6Co, was procured as a
dense, fine grained material. Microstructural features are provided in
Figure 24.

C. Fabrication Studies of ZrBZ+SiC Compositions with Ni

Additive

Conventional hot pressing experiments were attempled using

nickel additions of 9. 5 W/o and 1 8 w/o to a base Boride V composition.
Processing conditions, resulting billet densities, and a list of tests per-
formed on the processed billets are provided in Table 5. In view of the
low densities observed in the two processing runs at 26200 and 28100 F,
HP20 and HP22 respectively, it was concluded that no additional tests
would be performed on these billets. The magnitude of the absolute density
for Boride V is 5.50 g/cc; the addition of nickel as a non-reacting material
would raise the density of the 9.5 and 18.5W/o Ni compositions to a higher
value.

The last three processing runs performed at temperatures
of 3000 ° , 32000, and 3050°F revealed some difficulties inherent in the
composition selected for study. Representative microstructures for
HP25, HP34 and HP83 and results of X-ray diffraction and electron micro-
probe analyses are provided in Figures 25,26 and 27, respectively. These
micrographs reveal that liquid phases were present during processing and,
in fact, a significantly large quantity of molten material extruded from the
hot pressing mold during run HP83. The extruded material was principally
nickel which contained a needle-like precipitate of ZrO2 . Microprobe data

indicated a high zirconium content for the precipitate and X-ray data identified
monoclinic ZrO2 .

Analysis of the processing results in Table 5 and the billet
characterization data in Figures 25,26 and 27 shows that at temperatures
in the range of 28000 to 30000F reaction of nickel with silicon is detrimental
to the formation of a metal reinforced carbide ZrB +SiC composition.
Nickel silicide phases are produced and silicon carbide is removed from
the matrix. Liquid phase formation which is desireable for a processing
and infiltrating to form skeletal phases definately occurred but the resulting
solidfied grain boundary phase is not metallic, but rather intermetallic and
hence does not provide strength reinforcement.
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D. Fabrication Studies of ZrB2 Compositions with Metal

Additions

I-lot pressing experiments were carried out for the ZrB 2

compositions with 10 and 20 weight percent Ni, 10 weight percent Fe,
10 weight percent Cr, and 20 weight percent Ni with Ta wire reinforcement
shown: in Table 5.

The 20 weight percent nickel. composition was the most
successful from the point of lowering processing temperature. Temperatures
of 2420 F were employed to produce dense microstructures Figure 28.
Higher processing temperatures of 3020 F, HP88 resulted in loss of Ni
with densification of the remaining ZrB 2 , Figure 29. Processing with

10 weight percent Ni was not successful since a slow density billet was
produced. The nickel phase in ZrB2 20Ni billets occurs in the grain

boundary and is Ni3B 4 as identified by X-ray diffraction.

Processing runs using 10 weight percent Fe produced dense
materials, HP98 and HP101. In both cases the resulting billets are ferromagnetic
indicating that iron boride was not formed. X-ray analysis identified bcc
iron and iron was found in the grain boundaries. A representative micro-
structure is provided in Figure 30. The processing temperature of 30000F
is considerably less than the 36000F and higher temperatures needed to
fabricate dense bodies of ZrB2 .

Processing runs with 10 weight percent Cr produced a low
density billet, HP99 and a cracked billet, HP103. The somewhat higher
processing temperature employed for HP103 is not considered responsible
for the cracking. The microstructural features of the dense ZrB2 10Cr

billet is provided in Figure 31.

Attempts to incorporate Ta wire reinforcement in a ZrB2

20 Ni matrix were unsuccessful. The resulting billet, HP102, was cracked
and there was reaction of the Ta with the matrix composition. The gross
features of a cross section showing the 0.040 in. Ta filaments in place
are shown in Figure 16. The microstructural features of the ZrB

2
20 Ni

matrix interface with the Ta wire are shown in Figure 32.
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IV MECHANICAL TESTING OF BORIDE COMPOSITES

A. Introduction

The thermal stress and oxidation resistance of Boride V
and Boride VIII composites described in Section II are unrivaled by any
known material system. The major obstacle to wider utilization of these
attractive features is the low resistance to fracture exhibited by these
composites. The objective of the activities described in this section was
characterization of the fracture energy of current boride composites and
evaluation of variations in conpositison and structure.

B. Additional Measurements of Bend Strength and Modulus

of Boride Composites

The discussions of properties and fabrication presented
in Sections II and III provide backround information on engineering mechanical
property data for Boride V and Boride VIII (Table 2) and the anisotropy
in the bending strength and modulus of Boride VIII-M2 rising from
alteration of billet size and processing conditions. Tables 8-10 provide
additional data on bend strength and modulus for boride composites. Table
8 summarizes the results of three point bending tests of Boride V, Boride
VIII-M2 and Boride V plus nickel. These tests were conducted with bars
which were 2.25 inches long (0.0672M), 0.200 inches thick (0.0051M) and
0.200 inches high (0.0051M). The three point bending test bars did not
have any notches. The span length of the bars was cut from 3 inch diameter
(0.0762M) x 3 inch high (0.0762M) billets in a plane parallel to the diametral
face (i.e. in the plane of the billet). The values for bend strength and
modulus of Boride V are in general agreement with the values shown in
Table 2 at room temperature although the bend strength is higher for Billet
V07FR31L of Boride V than the engineering property value shown in Table
2.

Similarly, the bend strength for Boride VIII-M2 given in
Table 8 is in keeping with the results shown for this material (cut from
Billet HP74M2) in the parallel orientation in Table 6. However the modulus
is substantially below that observed by sonic methods. The results of bend
tests of Boride V plus nickel yielded substantially lower strength and modulus
values than Boride V as shown in Table 8. This finding is in keeping with
the results presented in Section III-C. Thus, reaction of the nickel additive
with the silicon carbide component of Boride V during processing prevented
full densification and lead to a low density product which exhibits a lower
strength than Boride V.

Table 9 contains the results of "four point bending"tests of
Boride VIII and Boride VIII-M2 conducted over a wide range of temperatures.
Although the bend strengths obtained from these tests are not directly
comparable the general level of agreement is quite tolerable. Thus, the
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bend strength values shown in Table 9 for Boride VIII indicate nearly
constant strength levels for samples taken parallel to the billet plane
between room temperature and 3730 R (2073 K). Although the strength
levels are below those shown in Table 2 for Boride VIII the latter were
obtained in 3-point bending tests. Moreover, the moduli shown in Table
9 for Boride VIII are about 30% larger than those given in Table 2. These
differences are also attributable to the testing method (4-point vs 3-point
bending).

Comparison of the bend strength and modulus values re-
ported in Tables 5 and 8 for samples of Boride VIII-MZ (in the parallel
orientation) measured in 3-point bending with similar samples measured
at room temperature by 4-point bending yields a relatively good comparison
for the moduli but lower strengths (25% lower) for the 4-point bending
samples.

Table 10 summarizes the results of room temperature,
4 -point bending tests conducted on samples of graphite reinforced Boride
V. Billets HP80 and HP82 were prepared with graphite cloth loadings
corresponding to layers of square weave cloth at spacings of 1/8" (3.18x10-3 M)

and 1/16" (1.59x1 -3M) respectively as indicated in Section III-B-2. The
measurements shown in Table 10 for the bend strength of HP80 in 4-point
bending determined on samples which were oriented parallel and perpen-
dicular to the plane of the billet are comparable to the bend strength of
Boride V. Thus introduction of graphite cloth at the low level characteristic
of the 1/8" spacing does not materially alter the strength. However, HP82
which has a higher graphite cloth loading, exhibits lower bend strengths.

C. Measurement of the Fracture Energy of Boride Composites

The fracture energy of boride composites and cobalt bonded
tungsten carbide bars was measured by means of slow bend and impact tests
of bars similar to that shown in Figure 34. The length of the notched charpy
bar configuration is 2. 25 inches (0. 0572M) while the overall height is 0.394

inches (0.0 1 OM). The notch is a groove with a 0.001 inch (2.54x10 5M) radius
root which was electrical discharge machined. The first series of slow bend
tests were performed on bars of Boride V (80 /oZrB2-20 /oSiC) of variable

thickness as reported in Table 11. Figures 35-38 summarize the results
and illustrate the fracture characteristics.

The slow bend tests were conducted in three point bending
with a span length of 1.75 inches (0.0444M). The loading rate was 100/lbs
minute (7.41N/Scc) with simultaneous recording of load and deflection on
an x-y recorder. Table 11 and Figure 35 indicate that the (W/A) values
obtained for 0.125 inch (0.00318M) thick bars are slightly higher than the
(W/A) values obtained with 0.200 (0. 00508M) and 0. 394 inch (0.010M) bars.
The energy W is the area under the load-deflection curve while A, the
fracture area, is the product of h (see Figure 35) and the thickness, t.
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Charpy impact tests were conducted on ManLabs Model
CIM- 1 (24 ft-lb) (32. 54J) impact tester which has a read-out accuracy
of 0.01 in-lbs (0.00113J). The test bar configuration employed in these
tests was that shown in Figures 34 and 35 with t=0.394 inches (0.010M)
which is the standard ASTM size. Pendulum height and velocity were
varied during the testing program in order to minimize tossing of the
samples and thus insure reproducible results. Test data generated
during the impact tests in terms of in-lbs (or Joules) was converted

into energy per unit volume i.e. in-lbs/in 2 or J/M2 by dividing the
energy read-out by the cross-sectional area of the sample which is the
produet of h (height) and t (thirikn § ), Tables 11= 18 contain all of the
results of fracture energy measurements obtained during the current
program.

Figure 39 shows typical Load-Deflection Curves for
samples of Boride VIII, Boride VIII-M2 and WC-6Co. These curves
form the basis of the slow bend data contained in Tables 1.1-18 and were
employed to construct the average values of the fracture energy (W/A)
determined for several boride composites and WC-6Co. Figures 41-45
show photographs of the initial series of slow-bend test bars after fracture.
This initial series of results as well as subsequent slow bend test data given
in Tables 11-17 and summarized in Table 18 indicate that WC-6Co has the
highest fracture energy. The cobalt bonded tungsten carbide material'exhibits

(W/A) values near 2.6 in-lb/in2 or 455 J/M2 . By comparison Boride VIII-M2

yielded values near 1.5 in-lb/in2 , (i.e. 263 J/M2 ) or 58% of the WC-6Co values.

Lower fracture energies of 1.1 in-lb/in2 or 193 J/M2 were observed for
Boride VIII, while Boride V which contains no graphite exhibited the lowest

slow bend fracture energies corresponding to (W/A) = 0.65 in-lb/in2 , (114 J/M2 ).
Reference to Figures 44 and 45 provides a clue to the different fracture
energies of the boride composites as disclosed by the slow bend tests. Thus,
the Boride VIII-M2 bars exhibit stepped or irregular fractures while the
other bars exhibit relatively smooth straight fractures. The improvement
in (W/A) afforded by the graphite additions shown by Boride VIII and VIII-MZ
in the slow bend tests may be due to the fact that the low modulus graphite
phase present in the former composites absorbs a substantial amount of
energy. This phase is not present in the Boride V composite. The latter
contains ZrB2 and SiC alone which have moduli 20 to 30 times higher than

graphite. It should be noted that the relatively high (W/A) value exhibited

by the WC-6Co (90V/oWC-10Ov/oCo) tool materials is due partly to the cobalt
binder phase and partly to the small grain size. Comparison of Figures 17,
22, 23 and 24 indicate that WC-6Co has a grain size which is 5-10 times
smaller than that exhibited by the boride composites.

Turning to a discussion of the impact test results, Figures
46-51 show photographs of a number of full sized impact bars after fracture.
In most cases, the fracture surfaces were relatively smooth, although
Boride VIII-M2 shown in Figure 50 exhibited some surface faceting.
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Nevertheless, the result differs considerably from that displayed in the
slow bend tests illustrated in Figure 45. The impact test data provided in
Tables 12-17 and summarized in Table 18 disclose two essential features.
First, the WC-6Co material exhibits impact energy values near 0. 76 ft-lb.

This translates to 73.9 in-lb/in 2 or 12950 J/M 2 on a unit area basis. The
boride composites exhibit impact energies which are one quarter to one
third the values measured for WC-6Co. Moreover, the Boride VIII and
Boride VIII-M2 composites which exhibited higher slow bend fracture energies
than Boride V (see Figure 40) exhibit lower impact fracture energies
(see Table 18). What is most surprizing however, is the extremely large
difference between the slow-bend and impact fracture energies observed
for all of the materials tested. In contrast to the results summarized in
Table 18 where the impact energies are 17 to 40 times larger than the slow
bend fracture energies, experience with a range of ultra high strength steels
and titanium alloys in our laboratory (20) usually yields a close correspondence
between the two values with the impact energies exceeding the slow bend
fracture energies by no more than a factor or two. Although the latter results
have been obtained under plane strain fracture conditions using precracked
samples (which cannot be readily employed in the present situation) the
current results are still surprising in view of our earlier experience (20).
The divergence is all the more difficult to reconcile because no plastic or
yielding behavior occurs in these materials at room temperature.

In order to gain additional confidence in the present data
additional tests will be conducted during the next phase of this program using
impact test samples which have smaller thickness dimensions. The current
test sample: size (t= 0.394 inches or 0.O1M) was selected because it corres-
ponds to the standard impact size. However tests of smaller samples would
provide a means of checking the impact fracture energy of (W/A) values.

At present, the boride composites exhibit fracture energies
which are one third to two thirds of the fracture energies exhibited by cobalt
bonded tungsten carbide in impact and slow bend tests. Studies of alloying
additions, compositing and grain size refinement will be conducted in order
to achieve boride fracture energies which are comparable to those of cobalt
bonded tungsten carbide without degradation of the thermal or oxidation re-
sistance.

Unfortunately, there are limited opportunities for comparing
slow bend and impact fracture energies of other ceramic type materials re-
ported in the literature with the present results for boride composites.
However a recent NASA sponsored study of silicon carbide and silicon nitride
composites (21) provides some data for comparison. Investigation of the impact
energy of 1/4' -x 1/4": unnotched specimens at room temperature yielded

impact energies of 8 in-lbs/in2 , (1402 J/M 2) for hot pressed SiC (21). Higher

values, 16 in-lb/in 2 , (2803 J/M ) were noted for Si3N4 . Improvement of the

impact energy of SiC to a level of 18 in-lbs/in2 , (3154 J/M ) was obtained
by incorporation of carbon cloth. The best values, corresponding to 25

in-lbs/in2 , (4380 J/M 2 ) were attained by incorporating the SiC whiskers
in SiC.

13



V MICROSTRUCTURAL CHARACTERIZATION OF FRACTURE

SURFACES

Microstructural characterization of all of the slow bend
and impact test samples was carried out by means of light microscopy
and electron fractography employing a two stage carbon replica technique
with chromium shadowing at 300. The gross features which distinguish
the fracture surfaces noted earlier in Section IV and displayed in Figures
36-51 were investigated further by microstructural examination. Electron
fractography proved to be most expeditious technique for displaying the
surface characteristics.: Figures 52-75 show typical fractographs of the
samples of boride composites and WC-6Co broken in impact and slow bend
tests.

With the exception of the WC-6Co material, the fracture
surfaces for a given material generated by impact do not appear to differ
significantly from those obtained in the slow bend tests. However differences
were observed for various composites. Figures 52-55 show typical fracto-
graphs of Boride V after slow bend and impact failure. Both sets of fracto-
graphs exhibit smooth transgranular cleavage. Little change was effected
by inclusion of nickel in Boride V as evidenced by Figures 56-57 or by the
incorporation of graphite cloth as shown in Figures 58-61.

A qualitative change in the fracture surface characteristics
is illustrated in Figures 62-63 for Boride VIII samples broken in slow bend
and impact tests. In both cases the fractographs exhibit rumpled quasi
cleavage features which is probably due to the distribution of graphite with
the structure (See Figure 22). Similar characteristics are displayed by the
slow bend and impact surfaces of Boride VIII-M2 shown in Figures 66-71.

In all of the forgoing examples the fracture characteristics
resulting from slow bend and and impact failures are virtually undistin-
guishable. However in the case of WC-6Co, shown in Figures 68-71
distinct differences are apparent. Thus, samples of this material broken
in slow bend tests exhibit smooth transgranular cleavage while samples
which were broken by impact exhibit intergranular failures.
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TABLE 1

CONVERSION UNITS EMPLOYED IN THIS REPORT

1 inch = 0.0254 meters

1 lb (force) = 4.448 Newtons

1 ft-lb (@nergy) = X, 356 JQlj1

1 in-lb = 0.113 Joules

1 in-lb/in2 = 175.2 J/M2

1 lb (force)/in 2 (pressure)=

6894 N/M2

1 BTU = 1054.4 Joules

1 BTU/lb = 2324 J/kg

1 BTU/fzse t 2 1 0 J/M2eC

1 lb (mass)/ft 3 = 16.02 kg/M3

1 BTU/lb OR = 4184 J/kg OK

1 BTU/ft sec oR = 6227 J/M sec OK
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TABLE 2

ENGINEERING PROPERTY DATA FOR BORIDE COMPOSITES

Boride V (80V/oZrB2-20V/oSiC)

Heat
Capacity

BTU/lb OR

0. 100
0.150
0.160
0.170
0. 176
0.184
0.189
0.194
0.199

Thermal
C onduc tivity

BTUIft. sec°R
x10

1.67
0.85
0.80
0.77
0.73
0.70
0.67
0.65

Modulus

10 6 lbs/in2

76
74
72
70
67
64

Room temperature compressive strength: 500,000 lbs/in2

Coefficient of thermal expansion: 3. 3x10 6/OR(5400 to 30000 R)

Boride VIII (56V/oZrB2 - 14v/oSiC-30v/oC)

Heat
Capacity

BTU/lb OR

0.108
0.178
0.195
0.216
0. 227
0.238
0.247
0.256
0.264

Thermal
Conductivity

BTU/ft. sec°R

x10 2

0.75
0.68
0.62
0.57
0.53
0.50
0.48
0.46

Bend.
Modulus Strength

106lbs/in2 103lbs/in2

31
31
31
31
31
31

41
42
43
44
45
46

Coefficient of thermal expansion: 3.6x10-6 /oR(540 ° to 30000 R)
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Temp.

oR

540
1080
1620
2160
2700
3240
3780
4320
4860

Density

lbs/ft3

342
340
337
335
333
331
329
326
324

Bend
Strength

103lbs/in
2

50
51
52
53
48
43

Temp. Density

lbs/ft 3

540
1080
1620
2160
2700
3240
3780
4320
4860

280
279
277
276
274
273
272
270
269



TABLE 2 (MKS)

ENGINEERING PROPERTY DATA FOR BORIDE COMPOSITES

Boride V (80V/oZrB2- 20/oSiC)

Temp. Density
Heat

Capacity
Thermal

Conductivity

10 3 kg/M 3

5.48
5.45
5.40
5.37
5.33
5.30
5.27
5.22
5.19

J/kg°K

418
628
669
711
736
770
791
812
833

J/Msec0 K

104
53
50
48
45
44
42
40

10 1N/M 2

5.2
5.1
5.0
4.8
4.6
4.4

Room temperature compressive strength: 34. 5 x 10 8 N/M2

Coefficient of thermal expansion: 5.9x10' 6 /oK(3000 to 1665 0 K)

Boride VIII (56V/oZrB2- 1 4 v/oSiC-30v/oC)

Temp. Density

oK 10 3 kg/M3

300
600
900

1200
1500
1800
2100
2400
2700

4.49
4.47
4.44
4.42
4.39
4.37
4.36
4.33
4.31

Heat
Capacity

J / kg°K

452
744
816
904
950
996
1033
1071
1105

Thermal
Conductivity

J/Msec°K

47
42
39
35
33
31
30
29

Modulus

101 1N/M 2

2.1
2.1
2.1
2.1
2.1
2.1

Coefficient of thermal expansion 6.5x10 6 /OK(300° to 16650 K)
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Modulus
Bend

Strength

300
600
900

1200
1500
1800
2100
2400
2700

3.4
3.5
3.6
3.7
3.3
3.0

Bend
Strength

1 08 N/M2

2.8
2.9
3.0
3.0
3.1
3.2



TAB3LE 3

MATERIAL IDENTIFICATION SYSTEM

Billet Identification No.

Material V

Components and Conmposition

80 V/oZrBZ: 20 V/oSiC

V07F R31L Material V, ZrB
2

Lot 07F, Billet
No. R31L

V10 HP28 Material V, ZrB 2 Lot 10, Billet
No. HP28
Material V, Ni powder added,
Billet No. HP34

V (Ni) HP34

V (Carbon reinforced 1/8" sep.)

Material VIII(14, 30)

Material V layers of 1/8" thickness
between layers of carbon cloth mesh

56 V/oZrB2: 14 V/oSiC: 30 V/oC

VIII (14,30) 11 D198M

VIII (14,30) HP45M2

Tungsten Carbide Cermet

Material VIII(14,30), ZrB Lot 11,
Regal Carbon Powder, Billet No.D198M

Material VIII(14,30), Billet No.
HP45, M2 designates a special
carbon additive

94 W/oWC: 6 W/oCo

WC 6 Co

ZrB
2

Additive Systems

ZrB2 20 Ni

Dense, high strength tungsten carbide
cermet tool material consising of
two phase structure with 90 /o WC-
10V/o Co.

80 W/oZrB2: 20 W/oNi
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TABLE 4

PROCUREMENT SOURCE AND PROCESSING CONDITIONS"*'

FOR BORIDE V, BORIDE VIII (14,30) AND TUNGSTEN CARBIDE

Billet Identification No. Press Facility

Billet Size

Temp. Pressure

psi

(10 4 N/M2 )Material V

Time Density Ref.

min g/c c

(10- 3kg/M3 )

V07FR31L
6 in x 6 in x 2 in

V 1OHP28
3 in dia x 1 in high

A 3705 3000
(2068)

ML 3650 3000
(2068)

90 5.53
((5.53)

40 5.48
((5.48)

Material (VIII (14,30)

VIII(14,30) 11 D198M
6 in dia x 3 in high

VIII (14,30) 11 D201M
6 in dia x 4 in high

A 3920 3000
(2068)

A 3920 3000
(2068)

300 4.58
f(4.58)

240 4.58
(4.58)

Material VIII (14, 30)M2

VIII (14,30) HP45M2
3 in dia x in high
VIII (14,30) NP2M2
6 in x 6 in x 2 in

ML 3750 3000
(2068)

3990 2200
(1517)

N

120 4.5
!(4.5)

_-- 4.58
((4.58)

Tungsten Carbide Cermet

WC 6 Co Procured as Dense Square Stock

*The quantities tabulated as Temperature,Pressure and Time refer to the conditions
at the maximum fabricating temperature (optical). The press facilities identified
as ML, N, and A refer to fabrication equipment at ManLabs, Norton Company and
Avc o.

(11)

(12)

(12)
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TABLE 5

PROCESSING CONDITION FOR Boride V-Ni COMPOSITES

Composition: Base boride composition is 88 W/oZrB2 and 12 W/o

SiC (Material V, 20 V/oSiC) with addition of Ni

in amounts of 9.5 and 18 W/o of base boride.

Billet Size: 3 in. diameter x 1 in. high

Billet No.

Ni Content

Pre ssure

psi

Temp Time

min .

Density

g/cc

Billet Disposition

2620 90

2810 135

3000 190

3200 135

3050 200

3.76

4.05

5.29

5.32

4.93

Billet repressed for HP22

Low density, no fur.-

tests

X-ray, Metallography

Electron Microprobe
Bend Strength

X-ray, Metallography
Bend Strength

X-ray, Metallography
Electron Microprobe
Bend Strength

23

HP20

9.5 W/o

HP22

9.5 W/o

HP25

18 W/o

HP34

18 W/o

HP83

18 W/o

3000

3000

3000

3000

3000



TABLE 6

VARIATION OF ANISOTROPY FOR MATERIAL VIII (14, 30) M2

(Room Temperature Data)

Billet Ident.

(Four Point Bending)

Orientation** Sonic Modulus Static Modulus Strength Strength/Av. Modulus

106 psi(lo 1 1 N/M2
) 10 6 psi(lO 1 1N/M 2 ) 10 3 psi(10 8 N/M 2 ) x10

- 3

No. NP2M2
D= 4. 58g/cc

Perpendicular 22. 1 (1.52)
Parallel 36.7 (2.53)

2Z.9 (1.58)
36.4 (2.51)

28.9 (1.99)
49.5 (3.41)

No. HP74M2
d= 4.51g/cc

Perpendicular 18.1 (1.25)
Parallel 43.4 (2. 99)

ND
ND

25.1 (1.73)
66.0 (4.55)

*The fabrication procedures at ManLabs employ a loose powder mold filling
operation with no temporary binders added to the component powders. Norton
Company employs its own proprietary procedures for hot pressing which in-
clude the use of preforms as opposed to loose powder fills.

***Specimen span orientations tabulated are relative to the plane of the hot
pressed billet which is perpendicular to the applied pressing direction.

1.28
1.35

1.39
1.52

3- ---�,----,.-..__L�-- -- -- ··------ --- r- ---.--�- ,,-,,.,



TABLE 7

PROCESSING CONDITIONS FOR ZrB2-METAL ADDITIVE COMPOSITES

Composition*

B2 90N-i

ZrB2 20Ni 0

ZrB 2 20Ni

ZrB 2 1ONi

Billet No.

HP90

HP91

HP96

Processing Conditions;'*:

Press Tempo

psi OF

3000 3000

3000 2425

3000 2475

3000 2460

Density

Time g/cc

min .

270

245

165

255

6,14

5. 96av.

6.04

4.94

ZrB 21 ONi

ZrB 2 20Ni with

Ta wire

ZrB 2 1OFe

ZrB2 1OFe

ZrB2 10Cr

ZrB 10Cr

HP97

HP102

HP98

HP101

HP99

HP103

3000
300

3000

3000
3000

3000

3000
3000

3000

2600
2800

2460

2800
2900

2900

2900
3000

3200

135
75

280

115
200

240

105
180

150

5.12

6.11

5.84

6.03

4.47

5.57

*See Table 3 for significance of formula designations
*-Tabulated values are the times at the maximum fabricating pressures
and temperatures.
0 Center Section 6.46 g/cc

°°Repressed HP97

0 0 0 Cracked

25
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TABLE 8

RESULTS OF THREE POINT BENDING TESTS OF

RECTANGULAR BARS FOR SAMPLE MATERIALS

1. 5P1 (maximum Stress): E

th 4th36 (Youngs modulus)

1 = span length = 1.7,5 inches

Material P t h ( E

(lbs) (in) (in) (ksi) (103 ksi)

Boride V 213 0.Z2045 0.2005 68.0 78.1

(80V/oZrB2-20V/oSiC 201 0.2045 0. 2005 64.2 72.2

Billet V07FR31L 194 0.2045 0.2005 61.9 84.2

Average 203 64.7 78.2

Boride VIII-M2 202 0.200 0.200 66.1 33.9

(56V/oZrB2- 14V/oSiC 189 0.200 0.200 62.0 33.7

-30V/oC) 192 0.200 0.200 63.0 31.9

Average 194 63.7 33.2

Boride V plus 127 0.200 0.200 41.5 31.8
Nickel 115 0.200 0.200 37.5 30.8

(70V/oZrB2-20V/oSiC 117 0.200 0.200 38.2 30.9

1 V/oNi)

Average 120 39.1 31.2
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TABLE 8 (MKS)

RESULTS OF THREE POINT BENDING TESTS OF

RECTANGULAR BARS FOR SAMPLE MATERIALS

1. 5P1 P1
3-=1 (maximum stress): E =---- (Youngs Modulus)

th 4th 6

1 = span length = 0.0429M

Material P t h C- E

(N) 10 2M 10- M 10 8 N/M 2 10 1 1 N/M 2

Boride V 947 0.501 0.491 4.69 5.38

(80V/oZrB- 20V/oSiC)894 0.501 0.491 4.43 4.98

Billet V07FR31L 862 0.501 0.491 4.27 5.80

Average 901 4.46 5.39

Boride VIII-M2 898 0.490 0.490 4.56 2.34

(56V/oZrB- 14V/oSiC 841 0.490 0.490 4.27 2.32

-30V/oC) 854 0.490 0.490 4.34 2.20

Average 864 4.39 2.29

Boride V plus 565 0.490 0.490 2.86 2.19
Nickel 512 0.490 0.490 2.59 2.12

(70V/oZrBZ 520 0.490 0.490 2.63 2.13

20V/oSiC

1 OV/oNi)

Average 532 2.69 2.15
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TABLE 9

ADDITIONAL MECIIANICAL PROPERTY DATA FOR

BORIDE VIII(56V/oZrB - 14V/oSiC-30V/oC) COMPOSITES

(Four Point Bending)

Billet Size

(Sample Span

Bend Strength (ksi)

Billet Diam. Orientation) 5400 R 1930 0 R 30100R 37300 R

Boride VIII
p = 4.58

6" Diam x 4" High
(parallel)

6" Diam x 4" High
(Perpendicular)

Boride VIII
p= 4 .6 6

3" Diam x 1" High
(parallel) 27+ 3 32+ 3

Boride VIII-M2 3" Diam x 1" High
p = 4.54 (parallel)

3" Diam x 1" High
(Perpendicular)

(1 inch span)

48+ 3 60+ 5 28+ 3 23+ 2

45+ 2 57+ 1 29+ 2 20+ 1

Youngs Modulus (103 Ksi)

Boride VIII
p = 4.58

Boride VIII
p= 4 . 6 6

6" Diam x 4" High
(parallel)

3" Diam x 1" High
(parallel)

Boride VIII-M2 3" Diam x 1" High
p = 4.54 (parallel)

Compressive Strength

43+ 1 40+ 1

40 41

33+ 1 29+ 1

Boride VIII, p = 4.6 = 191 Ksi
Boride VIII-M2, p= 4.55 = 154 Ksi

28

Mate rial

Density

35+ 3 37+ 3

30+ 2

33+ 3

24+ 1 23+ 1

30+ 3 27+ 2



TABLE 9 (MKS)

ADDITIONAL MECHANICAL PROPERTY DATA FOR

BORIDE VIII (56V/oZrB2 - 1 4 V/oSiC- 30V/oC) COMPOSITES

(Four Point Bending)

Material
Density

10- 3kg/M 3

Billet Size
(Sample Span-

Billet Diam Orientation)

Bend Strength 10 8 N/M 2

300°K 1073°K 16730K 20730°K

Boride VIII
p= 4.58

2.6+ 0.2'0. 152M Diam. x 0. 102M High 2.4+ 0.2
(parallel)

0. 152M Diam. x 0. 102M High2. 1+ 0.1
(pe rpendicula r)

1.7+ 0. l 1.6+ 0. 1

Boride VIII
p=4.66

0.076M Diam x 0.025M High 1.9+ 0.2
(parallel)

Boride VIII-M2 0.076M Diam x 0. 025M High3.3+0.2
p = 4. 54 (parallel)

2.2+ 0.2

4.1+ 0.4

2.1+ 0.2

1.9+ 0.4

0.076M Diam x 0.025M High 3.1+ 0.1 3.9+ 0.1 2.0+ 0. 1
(perpendicular)

(0, 025Mspan)

Boride VIII
p = 4.58

Boride VIII
p=4.66

Young s Modulus

0.152M Diam x 0.102M High 3.0+ 0.1
(parallel)

0.076M Diam x 0. 025M High 2.8
(parallel)

Boride VIII-M2 0.076M Diam x 0.025M High 2.3+ 0.1
p = 4.54 (parallel)

Compressive Strength

10 1 N/M2

2.8+ 0. 1

2.8

2.0+ 0.1

Boride VIII, p=4.6x10 3 kg/M3 = 13.2x108 N/lM2

Boride VIII-MZ, p=4.55x10 3 kg/M3 = 10.6xL(0 8 N/M 2

2.3+ 0.2

1.9+ 0.1

1.6+ 0.1

1.4+ 0.1

i I



TABLE 10

BEND STRENGTH OF BORIDE V AND BORIDE V REINFORCED

WITH GRAPHITE CLOTH

(Room Temperature, 4-point bending)*

(Height = 0.500 inches, Thickness = 0.150 inches, Length = 1.00 inches)

(Span distance 0.720 inches, load distance = 0.375 inches)

No Reinforcement
Bending Strength
(Ksi)

60.3
61.0
6-0.7 Average

Boride V
(Reinforced)
HP20
(1/8" Spacing)

Boride V
(Reinforced)
HP80
(1/8" Spacing)

Boride V
(Reinforced)
HP82
(1/16" Spacing)

Boride V
Reinfo rc e d
HP82
(1/16" Spacing)

Graphite Cloth
lies in the Length-
Thickness plane

Graphite Cloth
lies in the length-
Height plane

Graphite Cloth
lies in the length-
Thickness plane

Graphite Cloth
lies in the length-
Height plane

75.4
77.2
76.3 Ave rage

62.0
72.0
61.0
64.3 Average

46.8
48.7
45. 8
47.1 Average

39.3
37.3
38.1
38.2 Average

* Bending of Length-Thickness planes occurs about the Thickness Axis
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TABLE 10 (MKS)

BEND STRENGTH OF BORIDE V AND BORIDE V REINFORCED

WITH GRAPHITE CLOTH

(Room Temperature, 4-point bending)*

(Height = 0.00127M, Thickness = 0.00381M, Length = 0.0254M)

(Span distance 0.0183M, load distance = 0.0095M)

Bending Strength

(10 8 N/M
2

)
4.16

No Reinforcement

4.21
4.19 Average

Boride V Graphite Cloth
(Reinforced) lies in the length-
HP28 Thickness plane

(3.18x10 M Spacing)

Boride V Graphite Cloth
(Reinforced) lies in the length-
HP80 Height plane

(3.18x10 3M Spacing)

Boride V Graphite Cloth
(Reinforced) lies in the length-
HP82 Thickness plane

(1.59x10 3M Spacing)

Boride V Graphite Cloth
Reinforced lies in the length-
HP82 Height plane

(1.59x10 -3M Spacing)

5.20
5.32
5.26 Average

4.27
4.96
4.21

4.43 Average

3.23
3.36
3.16

3.25 Average

2.71
2.57
2.63

2.64 Average

* Bending of Length-Thickness planes occurs about the Thickness Axds

31

Boride V
HP28



TABLE 11

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE V (80V/oZrBZ-20V/oSiC)

SLOW BEND TESTS

1 = span length = 1.75 inches

h

Number (in)

3-13-4
5-28-1
5-28-2
5-28-3
3- 13-5
3-13-6
5-28-4
5-28-5
5-28-6
3-13-7
5-28-7
5-28-8
5-28-9

0.319
0.317
0.317
0.315
0.313
0.313
0.315
0.318
0.317
0.314
0.317
0.316
0.317

t

(in)

0.390
0.394
0.394
0.394
0.202
0.201
0.200
0.200
0.200
0.127
0.125
0.125
0.125

P(max)

(lbs)

225
221
231
230

99
106
114
116
116
68
70
68
68

W A

(in-lbs) (in
2
)

0.0844
0.0774
0.0832
0.0771
0.0386
0.0445
0.0345
0.0394
0.0348
0.0275
0.0311
0.0278
0.0269

0.1243
0.1249
0. 1249
0.1241
0. 0632
0.0629
0.0630
0.0636
0.0634
0.0397
0. 0396
0.0395
0.0396

Slow Bend
Fracture Energy

(W/A)

(in-lbs/in 2)

0.679
0.620
0.666
0.621
0.611
0.707
0. 548
0.619
0.549
0.693
0.785
0.704
0.679

Boride V + Nickel (70V/oZrB 2 - 20V/oSiC- 10V/oNi)

8-6-1
8-6-2
8-6-3
8-6-4

0.322
0.324
0.324
0.319

0.201
0.201
0.201
0.201

85
74
69
78

0.0298
0.0377
0.0417
0.0384

Boride V + Graphite Cloth - 1/ 8 Spacing

HP80-4 0.314 0.394 206

Boride V + Graphite Cloth -

HP82-3 0.314 0.394
HP82-4 0.314 0.394

Boride V + Graphite Cloth -

HP93-55
HP93-65
HP93-75
HP93-85

0.316
0.315
0.316
0.316

0.395
0.395
0.395
0.395

1/1 6 Spacing

164 0. 0822
164 0.0644

1/32" Spacing

169
170
165
169

0.0862
0.0731
0.0743
0.0794

32

0.0647
0.0651
0.0651
0. 0641

0.461
0.579
0.641
0.599

0.0847 0. 124 0.683

0.124
0.124

0.125
0.125
0.125
0.125.

0.663
0.519

0.691
0.587
0.595
0.636



TABLE 11 (MKS)

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE V (80V/oZrBz2-20/oSiC)

SLOW BEND TESTS

1= span length = 0.0445M

Number

3-13-4
5-28-1
5-28-2
5-28-3
3-13-5
3-13-6
5-28-4
5-28-5
5-28-6
3-13-7
5-28-7
5-28-8
5-28-9

h t

(10- M) (10-3M)

8.10
8.05
8.05
8.00
7.95
7.95
8.00
8.08
8.05
7.98
9.05
8.03
8.05

9.91
10.00
10.00
10.00
5.13
5.11
5.08
5.08
5.08
3.23
3.18
3.18
3.18

P(max)

(N)

1001
983

1027.
1023
440
471
507
516
516
302
311
302
302

W

(i -3J)(10 J)

9.54
8.75
9.40
8.71
4.36
5.03
3.90
4.45
3.93
3.11
3.51
.3.14
3.04

A

(10-5M2)

8.02
8.06
8.06
8.00
4.08
4.06
4.06
4.10
4.09
2.56
2.55
2.55
2.55

Slow Bend
Fracture Energy

(W/1;)

(J/M )

120
109
117
109
107
124

96
108
96

121
138
123
119

Boride V + Nickel (70V/oZrB 2-20V/oNi)

8.18
8.23
8.23
8.10

5.11
5.11
5.11
5.11

378
329
307
347

3.37
'4.26
4.71
4.34

4.17
4.20
4.20
4.13

81
101
112
105

Boride V + Graphite Cloth - 18x10-3M Spacing

HP80-4 7.98 10.00 916 9.57

Boride V + Graphite Cloth -9x10 -3M Spacing

HP82-3 7.98
HP82-4 7.98

Boride V

HP93-55
HP93-65
HP93-75
HP93-85

10.00
10.00

729
729

.9.29
:7.28

+ Graphite Cloth - 0.80x10 3M Spacing

8.03
8.00
8.03
8.03

10.03
10.03
10.03
10.03

752
756
734
752

9.74
8.26
8.40
8.97

33

8-6-1
8-6-2
8-6-3
8-6-4

8.00 120

8.00
8.00

116
91

8.06
8.06
8.06
8.06

121
103
104
111



TABLE 12

SUMMARY OF NOTCHED BAR IMPACT TESTS OF

BORIDE V (80V/oZrB2z-20/oSiC)

h
(in)

0.315
0.317
0.317
0.311
0.317
0.316
0.315
0.315

t
(in)

0.393
0.393
0.394
0.393
0.394
0. 394
0.394
0.394

IMPACT TESTS

ft-lbs =
0.222
0.225
0.203
0.382
0.241
0.223
0.277
0.229

Impact Energy = (in-lbs/in 2 )
21.5
21,7
19.6
37.5
23.2
21.5
26.8
22.2

Boride V
HP80- 1
HP80-2
Boride V
HP82- 1
HP82-2
Boride V
HP93-1C
HP93-2C
HP93-3C
HP93-4C

+ Graphite
0.316
0.314

+ Graphite
0.312
0.312

+ Graphite
0.315
0.318
0.316
0.314

Cloth - 1/8" Spa
0.393
0.393

- 1/16" Spacing
0.393
0.393

- 1/32" Spacing
0.390
0.390
0.391
0.391

.cing
0.272
0.294

0.255
0.262

0.270
0.218
0.230
0.233

Number

HP-28- 1
HP-28-2
31-LIC
31-L2C
31-L3C
31 - L4C
31 -L5C
31-L6C

26.3
28.6

25.0
25.6

26.4
21.1
22.4
22.8

34



TABLE 12 (MKS)

SUMMARY OF NOTCHED BAR IMPACT TESTS OF

BORIDE V (80V/oZrBZ-20V/oSiC)

t

(10- 3 M)

9.98
9.98

10.00
9.98

10.00
10.00
10.00
10.00

IMPACT TESTS

( J)= Impact Energy

0.305
0.275
0.518
0. 327
0.302
0. 376
0.311

= (J/M2 )

3800
3430
6570
4060
3770
4690
3890

Boride V + Graphite Cloth-3. 18x10-3 M Spacing

I-IP80- 1
HIP80-2
Boride V +
HP82- 1
HP82-2
Boride V +
HP93- 1 C
HP93-2C
HP93-3C
HP93-4C

8.03
7.98

Graphite
7.92
7.92

Graphite
8.00
8.08
8.03
7.98

9.98 0.369
9.98 0.399

- 1.59x10- 3 M Spacing
9.98 0.346
9.98 0.355

- 0.80x10-3M Spacing
9.91 0.366
9.91 0.296
9.93 0.312
9.93 0.316

35

Number

HP=-8= 1
HP-28-2
31-LIC
31-L2C
31-L3C
31 - L4C
31-L5C
31 -L6C

h

(10- 3 M)

8,00
8.05
8.05
7.90
8.05
8.03
8.00
8.00

4610
5010

4380
4480

4620
3700
3920
3990



TABLE 13

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF TUNGSTEN CARBIDE - 6WpoCo ( 9 0 /oWC-10V/oCo)

SLOW BEND TESTS

1 = span length = 1.75 inches

h
Number (in)

10-6-5
10-6-6
10-6-7
10-6-8
4S
9S
10S
11S
12S

0.316
0.317
0.317
0.317
0.309
0.322
0.316
0.317
0.319

t
(in)

P(max)
(lbs)

0.203
0.202
0.202
0.202
0.394
0.395
0. 394
0.395
0.395

270
268
282
254
482
562
530
535
558

W
:(in-lbs)

0. 1431
0.1675
0.1720
0. 1600
0.2076
0. 3934
0. 3551
0. 3478
0.3794

A
2

(in )

0.0641
0. 0640
0.0643
0.0640
0.1217
0.1272
0.1243
0.1252
0.1260

Slow Bend
Fracture Energy

(W/A)2

(in-lbs/in )

2.23
2.62
2.68
2.50
1.71
3.09
2.86
2.78
3.01

IMPACT TESTS

ft-lbs = Impact Energy =
0,608
0.700
0.916
0.754
0.778
0.878
0.706

(in-lbs/in2)
58.2
68.1
88.9
73.8
76.0
85.5
67.1

1C
2C
6C
7C
8C
13C
14C

0.318
0.313
0.314
0.311
0.312
0.316
0.320

0. 394
0.394
0.395
0.395
0.395
0.395
0. 395



TABLE 13 (MKS)

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF TUNGSTEN CARBIDE - 6 w/oCo (9 0V/oWC-10V/oCo)

SLOW BEND TESTS

1 = span length = 0.0445M

h t P(max)

(10 M) (10 M) (N)

8.03
8.05
8.05
8.05
7.85
8.18
8.03
8.05
8.10

8.08
7.95
7.98
7.90
7.92
8.03
8.13

5.16
5.13
5.13
5.13
10.00
10.03
10.00
10.03
10.03

10.00
10.00
10.03
10.03
10.03
10.03
10.03

1210
1201
1263
1138
2159
2518
2374
2397
2500

W

(10 J)

16.17
18.93
19.44
18.08
23.46
44.45
40.13
39.30
42.87

A

(10-5M 2)

4.13
4.13
4.15
4.13
7.85
8.20
8.02
8.08
8.13

Slow Bend
Fracture Energy
(W/A)

(J/M2 )

391
459
470
438
300
541
501
487
527

IMPACT TESTS

(J) = Impact Energy = (J/M 2 )
0.824 10,200
0.949 11,930
1.242 15,580
1.022 12,930
1.055 13,320
1.191 14,980
0.957 11,760

Number
10-6-5
10-6-6
10-6-7
10-6-8
4S
9S
10S
lS

12S

1C
2C
6C
7C
8C
13C
14C



TABLE 14

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE VIII (56V/oZrB2- 14V/oSiC-30V/oC)

SLOW BEND TESTS

1 = span length = 1.75 inches

t

(in)

0.202
0.201
0.200

0.394
0.394
0.393
0.393
0.393
0.393
0. 393
0.393

P(max)

(lbs)

112
111
115

190
180
212
203
206
205
201
206

W

(in - lb s)

0.0689
0.0705
0.0661

0.1101
0.1074
0.1717
0.1543
0.1751
0.1579
0.1387
0.1318

A

Slow Bend
Fracture Energy

(W/A)
(in2 ) - (in-lbs/in2 )

0.0641
0.0636
0.0642

0.1240
0.1240
0.1260
0.1248
0.1230
0.1234
0.1244
0.1238

1.08
1.11
1.03

0.89
0.87
1.36
1.24
1.42
1.28
1.12
1.07

IMPACT TESTS

ft-lbs = Impact Energy = (in-lbs/in )

0. 169
0.173
0.196
0.200
0.193
0.172
0.181
0. 172

16.3
16.8
19.0
19.2
18.7
16.5
17.8
17.5

Number

D198
10-6-1
10-6-2
10-6-3

D201M
3S
4S
1S
12S
13S
14S
15S
16S

h

(in)

0.318
0.317
0.321

0.314
0.314
0.321
0.318
0.313
0.314
0.317
0.315

DZ01M
5C
6C
7C
8C
9C
10C
1C
2C

0.318
0.314
0.316
0.318
0.316
0.319
0.310
0.311

0.393
0.393
0.393
0.394
0.394
0.393
0.394
0.394



TABLE 14(MKS)

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE VIII (56V/oZrBZ- 14V/oSiC-30V/oC)

SLOW BEND TESTS

1 = span length = 0.0445M

t P(max)
(10-3 M) (N)

5.13
5.11
5.08

10. 00
10. 00
9.98
9.98
9.98
9.98
9.98
9.98

498
494
512

845
801
943
903
916
912
894
916

W
(10- 3 J)

7.79
7.97
7.47

12.44
12. 14
19.40
17.44
19.79
17.84
15.67
14.89

A
(10- 5 M2)

4.13
4.10
4.03

8.00
8.00
8.13
8.05
7.93
7.96
8.02
7.99

Slow Bend
Fracture Energy

(W/A)
(J/MZ)

189
194
180

156
152
238
217
249
224
196
187

IMPACT TESTS

(J) = Impact Energy=

9.98
9.98
9.98

10.00
10.00
9.98

10.00
10.00

0.229
0.235
0.266
0.271
0.262
0.233
0.245
0.233

Number

D198
10-6-1
10-6-2
10-6-3

D201M
3S
4S
1IS
12S

. 13S
14S
15S
16S

h
(10-3M)

8.08
8.05
8.15

7.98
7.98
8.15
8.08
7.95
7.98
8.05
8.00

DZ01M
5C
6C
7C
8C
9C
10C
1C
2C

8.08
7.98
8.03
8.08
8.03
8.10
7.87
7.90

((J/M2 )

2860
2940
3330
3360
3280
2890
3120
3070



TABLE 15

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE VIII (56V/oZrB2 - 14V/oSiC-30V/oC)M2

SLOW BEND TESTS

1 = span length = 1.75 inches

W
(in-lbs)

0.1140
0.0836
0.0970
0.1169

0.1668
0.1250
0.1726
0.1584
0. 1841
.0. 1620
0.1566
0.1593

Slow Bend
Fracture Energy

A W/A
(in2 ) (in-lbs/in2 )

0.0632 1.80
0.0642 1.30
0.0632 1.53
0.0635 1.84

0.1240 1.36
0.1240 1.01
0.1249 1.38
0.1249 1.27
0.1241 1.48
0. 1237 1.31
0.1241 1.26
0.1233 1.29

IMPACT TESTS

ft-lbs = Impact Energy =

3.393
0.393
0. 394
0.394
0.394
0.394
0.394
0.394

0.168
0.186
0.183
0.170
0.169
0.172
0.213
0. 173

(in-lbs/in2 )

16.1
18.1
17.7
16.3
16.4
16.5
20.6
17.0

Number

HP45
8-31-1
8-31-2
8-31-3
8-31-4

NP 2
3S
4S
I S
12S
13S
14S
15S
16S

h
(in)

0.316
0.321
0.317
0.318

0.314
0.314
0.317
0.317
0.315
0.314
0.315
0.313

o

t
(in)

0.200
0.200
0.200
0.200

0. 394
0.394
0.394
0.394
0.394
0. 394
0.394
0.394

P(max)
(lbs)

120
123
122
147

224
179
208
176
198
181
178
179

NP 2
.1C
2C
5C
6C
7C
8C
9C
10C

0.318
0.314
0.315
0.317
0.314
0.318
0.315
0.310



TABLE 15 (MKS)

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF BORIDE VIII (56V/oZrB2 - 14V/oSiC-30V/oC)M2

SLOW BEND TESTS

1 = span length = 0.0445

W
(10- 3 J)

12.88
9.. 45

10.96
13.21

18.85
14.13
19.50
17.90
20.80
18.31
17.70
18.00

'Slow Bend
Fracture Energy

A (W/A)
(10- 5 M2 ) (J/M )

4.08 315
4. 14 228
4.08 268
4. 10 322

8.00 238
8.00 177
8.06 242
8.06 223
8.00 259
8.00 230
8.00 221
7.95 226

IMPACT TESTS

(J) = Impact Energy = (J/M2)

'2820
3170
3100
2850
2870
2890
3610
2980

Number

HP45
8-31-1
8-31-2
8-31-3
8-31-4

NP 2
3S
4S
1lS
12S
13S
14S
15S
16S

h
(10- 3 M)

8.03
8.15
8.05
8.08

7.98
7.98
8.05
8.05
8.00
7.98
8.00
7.95

t
(10-3M)

5.08
5.08
5.08
5.08

10.00
10.00
10.00
10.00
10. 00
10.00
10.00
10.00

P(max)
(N)

534
547
543
654

996
796
925
783
881
805
792
796

NP2
1C
2C
5C
6C
7C
8C
9C
10C

8.08
7.98
8.00
8.05
7.98
8.08
8.00
7.87

9.98
9.98
10.00
10.00
10.00
10.00
10.00
10.00

0.228
0.252
0.248
0.231
0.229
0.233
0.289
0.235



'l. 'A. LI,.1,L 16

SUMMARY OF NOTMICIID ]3AlR IMPACT TESTS

OF 80W/oZrB- 2 0 W/o NICKEL

Number

IIP90 1C
H1-1P902C
HP91 1C
HP91 2C

h

iL
0.317
0. 316
0.317
0.318

t

(kin)

0.394
0. 394
0.394
0. 394

0.266
0.286
0.239
0.252

42

25.6
27.6
23.0
24. Z2

jir^ 1 n2-f£-lbE - Impact Ene rgy ;



TABLE 16 (MKS)

SUMMARY OF NOTCHED BAR IMPACT TESTS

OF 80W/oZrBz-20W/o NICKEL

t
(10- 3 M)

10.00
10.00
1). 00
10.00

(J) = Impact Energy = (J/M2 )

O. 36 1 /1.490
(. 388
0. 321
0. 342

4.030
4240

43

N ul 'I be .

I 1..>90 1 C

I 1 ]P.-) 1 C
I-P912C

II
(10' 3M)

8.05
8. 03
8.05
8.08



TAB13LE 17

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF 90W/oZrB2 10W/o IRON

SLOW BEND TESTS

1 = span length = 1.75 inches

h

Number (in)

t

(in)

P(max)

(lbs)

W A

(in-lbs) (in2 )

Slow Bend
Fracture Energy

(W/A)

(in-lbs/in2 )

HP98-4S 0.313
HP98-5S 0.317
(p=5. 843
gms/cm )

HP101-4S
HP101-5S
HP101-6S
(p= 6.033
gms/cm )

0.315
0.314
0.318

IMPACT TESTS

HP98-1C 0.318
HP98-2C 0.319
HP98-3C 0.320
(p= 5.843
gms/cm )

0.395
0.395
0.395

ft-lbs =
0.231
0.228
0.226

Impact Energy =(in-lbs/in2 )
22. 1
21.8
21.5

HP101-1C 0.321
HP101-2C 0.318
HP101-3C 0.319
(p = 6. 03

3
gms/cm )

0.394
0.395

0.392
0.390
0.391

126
128

124
133
147

0.0451
0.0512

0. 0645
0.0532
0. 0588

0.1233
0.1251

0.1233
0.1226
0.1244

0. 368
0.409

0.523
0.434
0.473

0.391
0.392
0.391

0.230
0.232
0.253

22.0
22.4
24.3
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TABLE' 17 (MKS)

SUMMARY OF NOTCHED BAR SLOW BEND AND IMPACT TESTS

OF 90W/oZrB2 - 10W/o IRON

SLOW BEND TESTS

1= span length = 0. 0445M

Slow Bend
tI dre 'u gy Eizry

h t P(max) W A (W/A)

Number (10 3M) (10 3M) (N) (10-3J) (10-5 M 2 ) (J/M2 )

HP98-4S 7.95 10.00 560 5.10 7.95 64.5
HP98-5S 8.05 10.03 569 5.79 8.07 71.7

(p= 5.84x10 3kg/M3 )

HP101-4S 8.00 9.96 552 7.29 7.95 91.6
HP101-5S 7.98 9.91 592 6.01 7.91 76.0
HP101-6S 8.08 9.93 654 6.64 8.02 82.9

(p= 6 .0 3 x 10 3 kg/M3 )

IMPACT TESTS

(J) Impact Energy = (J/M
2
)

HP98-1C 8.08 10.03 0.313 3870
HP98-2C 8.10 10.03 0.309 3820
HP98-3C 8.13 10.03 0.306 3770

(p = 5.84 x 10 3 kg/M3 )

HP101-1C8.15 9.93 0.312 3850
HP101-2C 8.08 9.96 0.315 3920
HP101-3C 8.10 9.93 0.343 4260

( p=6.03x10- 3kg/M
3 )

45
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TAl3LEL 18

SUMMARY OF NOTCHED BAR SLOW BEND

AND IMPACT TEST DATA

(height under notch, h = 0.312-0.324 inches )

Material t

Boride V

Boride V

Boride V

Boride V + Nickel

Boride V + Graphite

Cloth (1/8" Spacing)

Boride V + Graphite

Cloth (1/16" Spacing)

Boride V + Graphite

Cloth (1/32", Spacing)

90V/oWC- 1OV/oCo

90V/oW C- 1oV/oCo

Boride VIII

Boride VIII

Boride VIII M2

Boride VIII M2

ZrB2 + Nickel

ZrB2 + Iron

p = 5. 8 4 gm/cm3

ZrB2 +

p =6.03

Iron

gm/cm 3

B3ar Thickness

t(in)

0.394

0.200

0.125

0.201

0.394

0.394

0.395

0.202

0.394

0.202

0.394

0.200

0.394

0.394

0.395

0.395

Average Slow Bend
Fracture Energy

(in-lbs/in2 )

0.65

0.61

0.72

0.57

0.68

0.59

0.63

Average Impact
Fracture Energy

(in-lbs/in2 )

24.3

27.5

25.3

23.2

2.51

2.69

1.07

1.16

1.62

1.30

73.9

17.7

17.3

25.1

21.80.40

0.48 22.9

46



TA:LI_ 18 (MK(S)

SUMMARY OF NOTCHED BAR SLOW BEND

AND IMPACT TEST DATA

(height under notch, h=7.42-8.23x10 3M)

Average Slow Bend Average Impact
Material Bar Thickness Fracture Energy Fracture Energy

-3 2
t (10M-3) (J/M ) (J/M )

Boride V 10.00 114 4260

Boride V 5.08 107 --

Boride V 3. 18 126 --

Boride V + Nickel 5. 11 100 --

Boride V -- Graphiite 10.00 119 4820

Cloth (3. 18x 1 0 M Spa ci ng)

Boride V + Graphite 10.00 103 4430

Cloth (1.59x 10 3M Spacing)

Boride V + Graphite 10.03 110 4060

Cloth (0.80x103 M Spacing)

90V/oWC - 10V/oCo 5. 13 440 --

90V/oWC .10V/oCo 10.00 471 12950

Boride VIII 5.13 187 --

Boride VIII 10.00 203 3100

Boride VIII M2 5.08 284 --

Boride VIII M2 10.00 228 3030

ZrB3
2

+ Nickel 10.00 -- 4400

ZrB2 + Iron 10.03 70 3820

p = 5.84x10-3kg/M3

ZrB
2

+ Iron 10.03 84 4010

p = 6.03x10- 3 kg/M3
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STAGNATION
PRESSURE
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Figure 1. Schematic Representation of Reuse Capabilities of Boride Composites.

15 PSI = 1.02 atm.

5000 BTU/lb = 1.16 x10 7 J/kg

380 BTU/ft sec = 4.31 x106J/M sec

0.03 in. = 7.62 x10- 4 M

1 PSI

10200 BTU/lb

500 BTU/ft sec

0.02 in.

= 0. 068 atm

= 2. 37 x10 7 J/kg

= 5.68 x106J/MZsec

= 5. 08 x10-4\M

. FDL-7MC MAX. CROSS
RANGE TRAJECTORY
L/D= 2.5- 3.0
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TIME= 1000 SEC.

ELAPSED TIME=2000 SEC.
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Plate No. 2-0675

10300 BTU/lb = 2. 39x107 J/kg

BTU/ft 2 sec = 5.62x10 6 J/M 2 sec

15 rnilo - 3,81xlO-4M

X2.38

Arc Plasma Test Boride V (Hf)HfBz. 1+20% SiC Average Surface

Temperature 46500 F, Exposure Time 22,400 Seconds (13
cyclic exposures each of approximately 1800 seconds), Stagnation
Pressure 0.07 Atm., Stagnation Enthalpy 10,300 BTU/lb, Cold

Wall Heat Flux 495 BTU/ft Sec. 15 Mils Recession, Hot Face
Up. One Inch Scale.

Plate No. 2-0595

4250 BTU/lb = 0.99x107J/kg

400 BTU/ft2 sec = 4.54x106 J/MZsec

104 Mils = Z.6 4x10 3M

X2.69

Figure 3. Arc Plasma Test Boride VIII(14, 30)ZrB2 +SiC+C Average Sur-
face Temperature 4415 F, Exposure Time 21,600 Seconds (12
cyclic exposures each of 1800 seconds), Stagnation Pressure
1.02 Atm., Stag2 ation Enthalpy 4250 BTU/lb, Cold Wall Heat
Flux 400 BTU/ft sec, 104 Mils Recession, Hot Face Down.
One Inch Scale.
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Plate No. 2-0222

5000BTU/lb = 1.16x10 7 J/kg

385 BTU/ft 2 sec = 4.37x10 6 J/M2 sec

26 Mils = 6.6x10- 4 M

X2.50

Figure 4. Arc Plasma Test Boride V, ZrB2. 1+20%SiC Average Surface

Temperature 45500 F, Exposure Time 7200 Seconds (4 cyclic
exposures each of 1800 seconds), Stagnation Pressure 1.00
Atm., Stagnation Enthalpy 5000 BTU/lb, Cold Wall Heat Flux

385 BTU/ft2 -sec. 26 Mils Recession, Hot Face Down. One
Inch Scale.
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Figure 5. Arc Plasma Test Boride V,ZrB2. 1 +20%SiC, Hot Surface.
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Figure 6. Nut and Bolt Machined from Boride VIII(14,30).-M2 Using
Carbide Tooling.
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Plate No. 6029

8500 lV'l'U/lb = 1. 98xi 7 J/k10

548 BTU/ft 2 sec= 6.21x106J/M sec

29 Mils = 7.37x10-4MX }

/ li ii j mI jli li ii H 1111 1111 1111i i I 1J lii iii i ii11111I I

1 2 3 4 5 6
Inches

MonlotIs Inc.

Figure 7. Boride Male Nosetip Assembly for Arc Plasma Testing
Showing Boride Nosetip in R512C coated Ta-lOW Holder
attached to Ta-1OW sting. This assembly was run at
45550 F in air at 0.071 atm. in the Avco Rovers Arc at Mach 3.2
for 30 minutes with a recession of 29 mils. The Heat Flux

was 548 BTU/ft2 sec at an enthalpy level of 8500 BTU/lb.
No cracks were observed during or after testing.

Plate No. 6030

[fllltIJtlllt1j1i1jjljlll1''''tllll[111 1 1111111111111111111 11111,111
I 2 3 4 5 6

inches

Monlobs Inc.

Figure 8. Partial Disassembly of Boride Male Nosetip Assembly
showing threaded joints. The nosetip was fabricated
from ManLabs Boride VIII-M2 (ZrB2 +SiC+C) Composite.
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Plate No.
6114

v9

~~~ ·4 '`~~~~1 ' ,·, ,,I

Iy :II

8900 BTU/lb

500 BTU/ft2 sec

29 Mils

= 2.07x10 7 J/kg

= 5.68x10 6 J/M 2 sec

= 7.36x10- 4M

/Ill/llllilll l/ / iqi /I llSl ] lH l /ISfI S 1I I flill11 1111 li I I S 1 1tll itsJ
1 2 3 4 5 6

inches

Monlobs Inc.

Figure 9. Post Exposure Photographs of Boride VIII-M2 Male
Nosetips. HP69 ran to destruction at Mach 3.2 under
ascending conditions at Stagnation Pressures near
0.07 Atm. Little degradation was observed after 277

seconds at 289 BTU/ft2sec, 5400 BTU/lb, 2440 F,

349 seconds at 381 BTU/ft2 sec, 6700 BTU/lb, 25950F,

390 seconds at 500 BTU/ft2sec, 8900 BTU/lb, 31100F.

Exposure at 708 BTU/ft sec and 9400 BTU/lb resulted
in surface temperatures near 5100 F and resulted in
thermal shock failure and melting. HP62 ran for 1800
seconds at a Stagnation Pressure of 0.071 Atm., Stagnation
Enthalpy of 8500 BTU/lb, Cold Wall Heat Flux of 548 BTU/

ft sec and a surface temperature of 4555 F. Total oxidation
depth after exposure was 29 mils. Subsequent to exposure,
HP62 was easily unscrewed from the Ta-1OW holder.
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Figure 10.

Plate No. 6024

8550 BTU/lb = 1.99x107J/kg

520 BTU/ft 2 sec = 5.90x106 J/M2 sec

36 Mils = 9. lx10-4 M

Boride Fcmale Nosetip Assembly for Arc Plasma Testing,
showing Boride Nosetip in R512C coated Ta-1OW Holder
attached to Ta-1OW sting. This assembly was run at
4920°F in air at 0.063 atm. in the Avco Rovers Arc at Mach
3.2 for 30 minutes with a recession of 36 mils. The Heat
Flux was 520 BTU/ft sec at an enthalpy level of 8550 BTU/lb.
No cracks were observed during or after testing.
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Plate No. 6025

//

1 2 3 4 5 6

Inches

Mnnlobs Inc.

Figure 11. Partial Disassembly of Boride Female Nosetip Assembly
showing threaded joints. The nosetip was fabricated from
ManLabs Boride VIII-M2 (ZrB2 +SiC+C) Composite.
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i = 4400 BTU/l1
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i = 8600 BTU/lb= 2.00x107J/kg
e

P =0.055 atm.
e

ie = 6600 BTU/lb

P =0.017 atm.
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Figure 12 . Exposure history for Boride Male Nosetip Boride VIII-M2-9X
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Plate No.
6129

6600 BTU/lb

200 BTU/ft 2 sec

10 mils

= 1.53x10 7 J/kg

= 2.27x10 6 J/MZsec

= 2.54x10 4M

st ava-ilable /
ra,-oC' ) /z? - 9'X

2 3 4 5 E
inches

Manlobs Inc.

Figure 13. Post Exposure Photographs of Boride VIII-M2
Male Nosetip HP9X following exposure illustrated
in Figure 12. The sequence consisted of a 1000

second hold at 0.015 Atm, 112 BTU/ft 2 sec, 4400
BTU/lb, 1662 F followed by direct heating for

1500 seconds at 0.055 atm., 464 BTU/ft 2sec, 8600
BTU/lb, 3790 0 F. After exposure the model was cooled
for 50 seconds by removal from the stream. Subse-
quently it was reinserted four separate times for 1000

second holds at 200 BTU/ft 2 sec, 6600 BTU/lb and
0.017 Atm interupted by 50 second removals from the
stream. Surface temperatures of 31100 F, 31300F,
3220°F and 3290 F were observed during these holds.
Total oxidation depth was 10 mils. Nosetip HP9X was
easily unscrewed from the holder after test.
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Plate No. 6047

10,800 BTU/lb = Z.5x107 J/kg

452 BTU/ft sec = 5.13x106 J/MZsec

46 mils= 1.16x10- 3 M

I i III 111111111 1 I I I I I I I 

2 3 4 5 6
inches

Monlobs Inc.

Figure 14. Boride Female Leading Edge Assembly for Arc Plasma Testing
showing Boride Leading Edge in R512C coated Ta-lOW Holder
at Ta-1OW Bolts in place. This assembly was run at 5090°F
in air at 0.062 atm in the Avco Rovers arc for 30 minutes at
Mach 3.2 with a recession of 46 mils. The Heat Flux was 452
BTU/ft sec at an enthalpy level of 10, 800 BTU/lb. No cracks
were observed during or after the test.

Plate. No. 6049

I J
l

".

~I III I / l" II j IiIIol I 1 1111 11 I 111111 11111, 11111j1i1~i ~ I 1111II ~it IIII'll WI
1 2 3 4 5 6

inches

Monlabs Inc.

Figure 15. Boride Female Leading Edge Assembly showing one of the
Ta-lOW bolts removed. The Leading Edge component was
fabricated from ManLabs Boride VIII-M2 (ZrB 

2
+SiC+C)

Composite.
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Plate No.
6126
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8600 BTU/lb = 2.00x10 7 J/kg

408 BTU/ft sec = 4.63x10 6 J/M2 sec
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Reproduced from

best available copy.

Figure 16. Post Exposure Photographs of Boride VIII-M2
Female Leading Edges. HP61 ran to destruction
at Mach 3.2 under ascending conditions at Stagnation
Pressures near 0.07 Atm. Little degradation was

observed after 435 seconds at 160 BTU/ft 2 sec, 4750

BTU/lb, 21800F; 335 seconds at 242 BTU/ft
2

sec.,

6500 BTU/lb, 2440 0 F, 407 seconds at 322 BTU/ft 2 sec.

8000 BTU/lb, 2595°F and 474 seconds at 408 BTU/ft 2

sec. 8600 BTU/lb and 2910 0 F. During the subsequent

exposure for 58 seconds at 617 BTU/ft 2 sec, 10500 BTU/
lb and 0.085 atm, the stream developed non uniformities
and burn-through occurred on the left side of HP61 shown
above. No cracks were formed. HP72 ran at a Stagnation
Pressure of 0.062 atm, Stagnation Enthalpy of 10800

BTU/lb, Cold Wall Heat Flux of 452 BTU/ftZsec and a
surface temperature of 5090 F for 1800 seconds. Total
oxidation depth was 46 mils. The tantalum bolts employed
in Tests HP61 and HP72 are shown above.
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Plate No.
6164

I Reproduced from
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Figure 19. Macrophotograph of Graphite Reinforced Material V, HP80,
Perpendicular Orientations.
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Figure 21. Microstructural Features of Material V Matrix in
Graphite Reinforced Material V, HP80.
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Plate No. 5930

X500

Microstructural Characteristics of Boride VIII

(56V/oZrB2- 14V/oSiC-30v/oC) Carbon added in the

form of 50A-200A particles which tend to agglomerate
during mixing and hot pressing.
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Plate No. 6169

Plate No. 6123

NP2M2, Parallel NP2M2, Perpendicular

Figure 23. Micr ostructural Features of Variations in Material. VIII(14, 30)
M2 with Processing.



Plate No. 6176

Figure 24. Microstructural Features of Tungsten Carbide Cermet,
WC6Co

64

Etched 1500X



(. r 1/
· ,LI b. i 

.'- ' _

~~~~~~~~~~~~~~~~~ ,j-,'~ , .. ~,

· I

L--"\ ' ' ' /'"'-~

r~~~~~

'V~;K_:2 '~ -., .'.' t

~~~~~~',~~~~~~~~ 1i /"·,

' r ''~ · . ~~~~~~. ',-,.- ".*' .,""- ' ' , "

\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'j
r · s/

r .'(A '{ -' J". ,- - _"

· ~ ~~i., - C.., 'J ~ , , · . i' .~,

L~~~~~~~~~~~~~~~~~~_.

G2).~ ~~~eroue from,
As Poise l.f Vaalbl oY50

Plate, No.
5773

Characterization Data:

Density:
Strength:
X-Ray Diffraction:

5. 29 g/cc
36,500 psi at room temperature, 3 point bending
ZrB

2
identified, SiC absent, Ni absent, Ni B

suggested
Electron Microprobe Analysis: Ni containing phase at Zr containing p:.

Elemental distribution scan:

Point counting:

Figure 25.

no positive identification of Ni-Si p'L..
some indication of Zr-Si phase: grain
boundary phase probably below detection limit

White phase rich in Zr
Grain boundary phase contains Si and Ni
Grey phase rich in Si

Microstructural Features and Characterization Data for
Hot Pressed Material V-Ni Compositions, HP25
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500X

Characterization Data:

Density:
Strength:
X-ray Diffraction:

Figure 26.

5.32 g/cc
35,000 psi at room temperature, 3 point loading
ZrB

2
identified, SiC absent, Ni absent,

Extra lines same as HP25 but of weaker intensity

Microstructural Features and Characterization Data
for Hot Pressed Material V-Ni Compositions, HP34
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4. 93 g/cc

Electron Microprobe Analysis:

Figure 27.

Scanning display technique: Areas
deficient in Zr are rich in either Si
or Ni or both.

Microstructural Features and Characterization Data
for Hot Pressed Material V-Ni Compositions, HP83
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Figur 28. Microstructural Features 0f ZrB2-Ni Composition Processed
at.g420°F Maximum, HP90 
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Plate No.
6278

Figure 30. Microstructural Features of ZrBZ10Fe, HP101
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Figure 31. Microstructural Features of ZrB210Cr, HP103
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Plate No.
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Figure 32. Photomacrograph of Attempted Fabrication of Ta
Reinforced ZrB 20Ni, HP1022
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Matrix Interface (,Longitudinal Direction), HP102
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Plate No. 5832

I' Iill J-- -III I I I q q rlI III II ll- III f i 1 ' I I ll f III 'I1
2 3 4

inches

Figure 34. Photograph of Notched Charpy Bar with 0.077 inch (0.00196M)
notch, interior angle 45 . Electrical Discharge Machined

root radius equals 0.001 inches(2.54x10-5M).
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Thickness, t, meters

0.00254 0.00508 .0.00752 0.01016 0.01270

0.80 140.2

0.70 O 122.6

0.60:0 CD 105.1

0.50 87.6 6

0.400 70.1

0.30 52.6

O.20 ,,_ 35.0

] h=0.317 in
o0.10 o _ t - 17.5

O. 00 _ ..... _ -_.... e ..
0.10 0.20 0.30 0.40 0.50

Thickness, t, inches

Figure 35. Variation of (W/A) with Sample thickness for Boride V (ZrB 2 +SiC) (0.317 in = 0.00805xM)
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Plate No. 6076
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Figure 36.

- ./
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Photograph of Boride V (80V/oZrB2-20v/oSiC) Notched Charpy

Bars run to fracture in Slow Bend test. Thickness equals

0.394 inches (O. 010M). Average maximum load, 25 lbs.

(1000N): average (W/A)=0.65 (in-lbs/in2
) = 114 (J/M 2 ).
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Figure 37. Photograph of Notched Boride V (80V/oZrBz-Z0/oSiC)

Charpyf Bars run to fracture in $IC./ lend st, ?'i,;l

equals 0 125 inches (0,00318M). Average maximum load,
7 2

equals [0 !q.:Z5 ICera

68 lbs 330Z : 1 rage
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Plate No. 6077

A9; Va

Figure 38. Photograph of Boride V (80V/oZrB-20V/oSiC) Notched Charpy

Bars run to fracture in Slow Bend test. Thickness equals
0.200 inches (0.00508M). Average maximum load, 110 lbs.

(489N): average (W/A)= 0.61 (in-lbs/in2 ) = 107 (J/MZ).
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Dcflection (10 0 Meters)

7.62 10.16

WC-6Co
10-6-7

Boride VIII-MZ
8-31-2 "

Boride VIII
10-6-3

Deflection (inches)

Figure 39. Typical Slow Bend Load-Deflection Curves; for Notched
Bars.
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Figure 40. Average Values of (W/A) Determined from Slow
Notched Bars.
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Plate No. 6081

Figure 41. Photograph of Boride V plus Ni (70V/oZrB2-ZOV/oSiC-10V/oNi)

Notched Charpy Bars run to fracture in Slow Bend test. Thickness

equals 0.200 inches, (5.11x10-3M). Average maximum load, 77

lbs, (342N): average (W/A); 0.57 (in-lbs/inZ), (100J/M 2 )
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Plate No. 6079
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Figure 42. Photograph of Boride VIII(56V/oZrB -14V/oSiC-30V/oC) Notched
Charpy Bars run to fracture in Slow Bend test. Thickness equals

0.200 inches,(5.08x10-3M). Average maximum load, 113 lbs, (503N):

average (W/A), 1.07 (in-lbs/in2 ),(187 J/M2 ).
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Plate No. 6080
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Figure 43. Photograph of Tungsten Carbide plus 6 W/oCo(90V/oWC-lOV/oCo)
Notched Charpy Bars run to fracture in Slow Bend test. Thickness

-3
equals 0.200 inches,(5.08x10 M). Average maximum load,

269 lbs) (1197N):average (W/A), 2.51 (in-lbs/in ),(440 J/M2 ).

79

I

I

\ 



J , I

\ -
- t.

Plate No. 608Z
I _ Sk,; ;

'-.3/-/ ?--3 /- :z . - 3/-3 V- /-/
I ,ll IlllllJIIIIIIIlllllllllllllllllll IIIIIII llllll IIIII IIIIIIIIll lil I\It 

1 2 3 4 5 6
inches

Manlabs Inc.

/71/2 Yc•e

Figure 44. Photograph of Boride VIII-MZ (56V/oZrB - 14V/oSiC-30V/oC)

Notched Charpy Bars run to fracture in Slow Bend test. Thickness

equals 0.200 inches,(5.08x10O-3M). Average maximum load,

128 lbs,(569N): average (W/A), 1.62 (in-lbs/inZ) (284J/M 2 ).
Note stepped fracture surface.
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Figure 45. Composite photograph of (from left to right): ( 9 0V/oWC-10/oCo),
(70V/oZrB-20V /oSiC-10 /oNi), (56V/oZrB- 14V/oSiC-30V/oC)

VIII-M2, (56V/oZrB2 -14V/oSiC-30V/oC) VIII and (80V/oZrB
2

-

2 0 V/oSiC)V. Note stepped fracture surface of Boride VIII-M2
composite as compared with smooth fracture surface of other bars.
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Plate No. 6161

/
/Illi /l llllll/ IIII II ll {I IIIIII III III III.II 11 II fi III ll It II II I\IIIII\
I 3 :4 -5 -

inches

Monlobs Inc.

Figure 46. Photograph of Boride V (ZrB2 +20%SiC) Notched Charpy Bars
run to fracture in Impact Test. Thickness equals 0.394 inches.
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Figure 47. Photograph of Boride V reinforced with 1/8" layers of Graphite,
Notched Charpy Bars run to fracture in Impact (1,2,3) and Slow
Bend (4) Tests. Thickness equals 0.'394 inches.
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Plate No. 6163
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Figure 48. Photograph of Boride V reinforced with 1/16" layers of Graphite,
Notched Charpy Bars run to fracture in Impact (1,2) and Slow
Bend (3,4) Tests. Thickness equals 0.394 inches.
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Figure 49. Photograph of Boride VIII(14, 30) Notched Charpy Bars run to
fracture in Impact (1,2) and Slow Bend (3,4) Tests. Thickness
equals 0. 394".
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Plate No. 6160
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Figure 50. Photograph of Boride VIII(14, 30)M2 Notched Charpy Bars run
to fracture in Impact (1,2) and Slow Bend (3,4) Tests. Thickness
equals 0. 394 inches.
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Figure 51. Photograph of Tungsten Carbide + 6W/oCo (10o/oCo) Notched
Charpy Bars run to fracture in Impact (1,2,3) and Slow Bend
(4) Tests. Thickness equals 0.394-inches.
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Plate No. 42101B

L i
Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

Figure 52. Electron Fractograph of Boride V Sample 5-28-9 Fractured
in Slow Bend Test. Note Smooth transgranular cleavage.
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Plate No. 4210E
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Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

X7750

Figure 53. Electron Fractograph of Boride V Sample 5-28-9 Fractured
in Slow Bend Test. Note Smooth transgranular cleavage.
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Plate No. 4262E
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Two Stage Carbon RLedlica shadowed X2750
with Chromiumla at 30 , Unetched

Figure 54. Electron Fractograph of Boride V Sample I-IP28-2 Fractured
in Impact Test. Note Smooth transgranular cleavage.
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- ' Plate No. 4262C
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Two Stage Carbon reglica Shadowed
with Chromium at 30 , Unetched

X7750

Figure 55. Electron Fractograph of Boride V Sample HP28-2 Fractured
in Impact test. Note smooth transgranular cleavage.
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Plate No. 4211B
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Stage Carbon replica shadowed
Chromium at 30 , Unetched

Figure 56. Electron Fractograph of Boride V

z0V/oSiC - 10V/oNi) Sample 8-6-3.
intergranular .surface cleavage.

plus Nickel (70V/oZrB2 -

Note relatively smooth
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Plate No. 4211C
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I , .

Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

Figure 57. Electron Fractograph of Boride V

20V/oSiC - 10V/oNi) Sample 8-6-3.
intergranular surface cleavage.

X7750

plus Nickel (70v/oZrB2-
2

Note relatively smooth
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Plate No. 4268D
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Two Stage Carbon replica shadowed
with Chromium at 30 , Unetched

Figure 58. Electron Fractograph of Boride V reinforced with 1/16" Graphite
Layers Fractured in Slow Bend Test. Note Smooth Transgranular
Cleavage. Sample HP82-3.
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Plate No. 4268C
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Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

X7750

Figure 59. Electron Fractograph of Boride V reinforced with 1/16" Graphite
Layers Fractured in Slow Bend Test. Note Smooth Transgranular
Cleavage. Sample HP82-3.
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Plate No. 4266DI* 1 1., .:I,% 
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Two Stage Carbon relica shadowed X750 

Two Stage Carbon relica shadow3ed X2750
with Chromium at 30 , Unetched

Figure 60. Electron Fractograph of Boride V reinforced with 1/16" Graphite
Layers, Fractured in Impact Test. Note Smooth transgranular
Cleavage. Sample HP82-2.
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Two Stage Carbon replica shadowed
with Chromium at 30 , Unetched

Figure 61.
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Plate No. 4266A
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X7750

Electron Fractograph of Boride V reinforced with 1/16" Graphite
Layers Fractured in Impact Test. Note Smooth transgranular
Cleavage. Sample HP82-2.
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Plate No. 4260A

Two Stage Carbon replica shadowed X2750
with Chromium at 30 , Unetched

Figure 62. Electron Fractograph of Boride
Bend Test. Note rumpled quasi
D201M-3.

VIII(14, 30) Fractured in Slow
cleavage Surfaces. Sample

Plate No. 4260C

Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

X7750

Figure 63. Electron Fractograph of Boride
Bend Test. Note rumpled quasi
D201M-3.

VIII(14, 30) Fractured in Slow
cleavage Surfaces. Sample
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Figure 64. Electron Fractograph of Boride VIII (14, 30) Fractured in Impact
Test. Note rumpled quasi cleavage Surfaces, Sample D201M-1.
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Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

X7750

Figure 65. Electron Fractograph of Boride VIII(14,30) Fractured in Impact
Test. Note rumpled quasi cleavage Surfaces. Sample D201M-1.
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Two Stage Carbon replica shadowed
with Chromium at 30 , Unetched

Figure 66.
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Plate No. 4218A

/.

2- J,-

X2750

Electron Fractograph of Boride VIII-M2 (56V/oZrB2- 1 4 V/p SiC

-30V/oC) Sample 8-31-3. Note rumpled quasi cleavage surfaces
indicating irregular crack propagation.
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Two Stage Carbon replica shadowed
with Chromium at 30-, unetched

Plate No. 4218D

X7750

Figure 67. Electron Fractograph of Boride VIII-M2 (56V/oZrB -14V/oSiC

-30V/oC) Sample 8-31-3. Note rumpled quasi cleavage surfaces
indicating irregular crack propagation.
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Figure 68.
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Plate No. 4264D

, Unetched

Electron Fractograph of Boride VIII(14, 30)MZ Fractured in Slow
Bend Test. Note rumpled quasi cleavage Surfaces. Sample
NP2-3.
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Two Stage Carbon replica shadowed
with Chromium at 30 , Unetched

Figure 69. Electron Fractograph of Boride VIII(14, 30)MZ Fractured in Slow
Bend Test. Note rumpled quasi cleavage Surfaces. Sample
NP2-3.
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Plate No. 4260D

Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

Figure 70. Electron Fractograph of Boride VIII(14, 30)M2 Fractured in
Impact Test. Note rumpled quasi cleavage Surfaces. Sample
NP2-2.
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Two Stage Carbon reBlica shadowed
with Chromium at 30 , Unetched

Figure 71.
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Plate No. 4260E

Reproduced from~~~~~~~~~~~~~~~~~~~~~~~~

Reproduce
best avaiabe copy. I

X7750

d X7750

Electron Fractograph of Boride VIII(14, 30)M2 Fractured in
Impact Test. Note rumpled quasi cleavage Surfaces. Sample
NPZ-2.

93

.-

X2750

II

k..I --t

I

I ,

. - -

I!', I
\ttei ::Z ,A



,~~~~~~~~~~~~~~~~~~~- A 
t , , .

A, , I , . ;
, " , A , x 'A ! , .

· I , . r"~r·

..... '.- ' A ~'A . i *-,- ' .· ' ., "..~~ ,. '' , 2 I)~~~~~~~~~~~~~~~~

' I / .

/ , ,- 'I ~ " ' ~.,- 

/ l ,t.:/,- ,: ',%\ /r ,v

?, /· -.., 

....(',', ~,-'., '% ' , ','.x 'x , .> ":A ''A

'"~~~~~~~~~~~ ' J i~'~ ~'' "<'i ' ' 2 A.:'..-.I~..
' 7

,? _~~~ ._~r 

·I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
" ; ' x'· ' 

/
. ~s~.'."--"- "- ' 

I· ''~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Two Stage Carbon reglica shadowed
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Plate No. 4215A
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Figure 73.
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Plate No. 4215C

X7750

Figure 72. Electron Fractograph of Tungsten Carbide + 6W/oCo Fractured
in Slow Bend Test. Note Smooth transgranular cleavage.
Sample 10-6-5.

'..…. A
. : P ' I/ .7j 3:! / -X '..A

· _ .'- A - (··'A: ' ,;::'-' "- , ,- ."-- -%.k ,"

',~~~~~~~~~~~~" x'/!'" A/\'
i~~~~-,~ I ' ~'', ,". · ~4 

· '',. / t 't ,~~B':V! \"' .. ", , "::

A /' ' i' \ / .. , 

/~~~ ~ ~~~~~ ',. , '6";- ¼--. ',/ ,x '
A- 4 / ;:i:"

, ,', r .", '.'>: (;i · J ····C~~~` · . xl'i~~~~~~~~~~

".. .' 
-'

/~/:,. 

-rl) b "C~~~ ...,·, :P 1 jj~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ ' ~' r ( ' - '',-'; 

Two Stage Carbon reglica shadowed
with Chromium at 30 , Unetched

Electron Fractograph of Tungsten Carbide + 6 W/oCo Fractured
in Slow Bend Test. Note smooth transgranular cleavage.
Sample 10-6-5.
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Two Stage Carbon replica shadowed X2750
with Chromium at 30,~ Unetched

Plate No. 4261C

Electron Fractograph of Tungsten Carbide + 6W/oCo Fractured
in Impact Test. Note intergranular failure and dimples on
Surfaces. Sample WC-6Co-2.

Figure 74.
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Two Stage Carbon replica shadowed X7750
with Chromium at 30
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Plate No. 4261E

Figure 75. Electron Fractograph of Tungsten Carbide + 6w/oCo Fractured
in Impact Test. Note intergranular failure and dimples on
Surfaces. Sample WC-6Co- 2 .
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